NASA Conference Publication 2492

Third Conference on
Artificial Intelligence for
Space Applications

Part |

Compiled by
J. S. Denton,
M. S. Freeman,
and M. Vereen

Proceedings of a conference sponsored by

The University of Alabama in Huntsville and

The National Aeronautics and Space Administration
and held in Huntsville, Alabama

November 2 -3, 1987

NASA

National Aeronautics
and Space Administration

Scientific and Technical
Information Branch

1987

CONFERENCE COORDINATOR

THOMAS S. DOLLMAN
INFORMATION AND ELECTRONIC SYSTEMS LABORATORY
MARSHALL SPACE FLIGHT CENTER

CONFERENCE CO-CHAIRMEN

MSFC GARY L. WORKMAN, UAH

JUDITH S. DENTON,

PROCEEDINGS COORDINATOR

MARY VEREEN

LOGISTICS AND ARRANGEMENTS COMMITTEE

DAVID WEEKS, MSFC

f

KAREN MACK, UAH

TECHNICAL AND PROGRAM COMMITTEE

MICHAEL FREEMAN, MSFC JAMES JOHANNES, UAH
ROWLAND BURNS, MSFC
DAN HAYS, UAH
ELAINE HINMAN, MSFC
BERNARD SCHROER, UAH
CAROLINE WANG, MSFC

PUBLICATIONS COMMITTEE

LUSTER INGRAM, MSFC

JEANETTE REISZ,
WILLIAM SELIG,

BERNARD SCHROER, UAH

MSFC
MSFC

PUBLICITY COMMITTEE

JUDITH S. DENTON, MSFC
GERRY HIGGINS,
KAREN MACK,
ADVISORS
JONATHAN HAUSSLER,

ELAINE HINMAN,
GABE WALLACE,

GARY L. WORKMAN, UAH
MSFC
UAH

MSFC
MSFC
MSFC

FOREWORD

This document contains the Proceedings of the Third Conference on Artificial Intelligence for
Space Applications (CAISA), sponsored by the National Aeronautics and Space Administration's
(NASA's) George C. Marshall Space Flight Center (MSFC) and the University of Alabama in
Huntsville (UAH). There is widespread interest throughout the aerospace community in
utilizing scientific and technical developments from the field of Artificial Intelligence (Al) to
enhance our space program. For NASA, future activities in space will rely on the effective
utilization of key Al components. The intent of this conference is to provide an opportunity for
those groups and individuals who employ Al methods in space applications to identify common
goals, to compare the effectiveness of the various approaches being investigated, and to discuss
issues of general interest in the Al community. The Third CAISA brings together a diversity of
scientific and engineering work and is intended to promote thoughtful discussion concerning the
possibilities created by this work.

Al contains many components, some of which can be selectively applied to develop more
competent, less demanding flight/ground systems. This is the message of the invited speakers at
our keynote session. As the participants in this conference have recognized, there is no more
fascinating - nor more potent - combination of technologies than is found in the use of Artificial
Intelligence to support our exploration of space. The potential benefits to our society and all
mankind are literally limitless. The presentations in our technical sessions discuss various
aspects of this technology. The papers presented were selected through a careful review of the
submitted abstracts by at least five members of the Technical Committee. The selected
presentations, represented by the papers or abstracts herein, were organized into twenty-one
technical sessions. Every effort was made to minimize the conflicts arising from parallel
sessions. The broad range of topics presented is indicative of the interest in NASA's goals
commonly found in the Al community.

This conference would not have been possible without the dedicated efforts of many people. First,
| would like to thank the authors whose research and development efforts are presented here.
Second, | thank the members of all the committees, the advisors, and the volunteers who planned
and implemented the numerous activities which enable a conference such as this one. | thank the
exhibitors for their efforts to develop and demonstrate tools for implementing many of the ideas
discussed during these two days. And, finally, | thank the invited speakers and the many other
people from NASA and UAH whose interest in Artificial Intelligence and space applications makes
this conference both possible and meaningful.

Thomas Dollman

ORECEDING PAGE BLANK NOT FILM:D

TABLE OF CONTENTS

VALIDATION AND VERIFICATION

Verification Issues for Rule-Based
Expert Systems

Chris Culbert, Gary Riley, and Robert T. Savely

Using Output to Evaluate and Refine Rules in
Rule-Based Expert Systems

D. C. St.Clair, W. E. Bond, and B. B. Flachsbart

Temporal and Contextual Knowledge in
Model-Based Expert Systems: Ford
Aerospace’s Paragon Project

Tihamer Toth-Fejel and Dennis Heher

Methodology for Testing and Validating
Knowledge Bases
C. Krishnamurthy, S. Padalkar, J:. Sztipanovits

ANA R. B. PULVES ittt it tenesesesssesossnsesecanseses

DEVELOPMENT TOOLS

CLIPS as a Knowledge Based Language

James B. Harringtonciiiiiienenerneeenneacoas

An Easy-to-Use Diagnostic System
Development Shell
L. C. Tsai, J. B, Ross, C. Y. Han,

ANA W, G. WEE .ttt etveeerveonreeeoanceoaseanonsseasenes

An Inference Engine for Embedded
Diagnostic Systems

B. R. Fox and L. T. BrewsStercieeeeeneoeeseoneases

CLIPS: An Expert System Tool for
Delivery and Training
Gary Riley, Chris Culbert, Robert T. Savely

And Frank LOPEZ ...t ivieeereneeeenonsnonenseannnssan

TELEOPERATOR/ROBOTICS

Issues Associated with Telerobotic Systems in
Space

S. Hofacker and B. J. SChroerveveiieneeeennnns

PRECEDING PAGE BLANK NOT FIiLM-D

Telerobotic Controller Development
W. S. Otaguro, L. O. Kesler, Ken Land
and Don Rhoadesceceececccnsaoaracsasccansccerccs

Software Simulation of Time Delay in
Teleoperation
Wayne GOOdE ...ovveeccronennsonrsonnonsecersenennsesss

NEW TECHNOLOGIES FOR SPACE STATION AUTOMATION

MTK: An AI Tool for Model Based Reasoning
W. K. Erickson and M. R. Schwartzccccccenecee

Integration of Symbolic and Algorithmic

Hardware and Software for Automation

of Space Station Subsystems

H. R. Gregg, C. M. Wong, E. Hack

and K. J. Healey ...cevieereeronecaccaccosccncnncncccs

Requirements and Options for Communications

Services in Support of the Systems Autonomy
Demonstration Project

R. M. Brown and Robert Yee seeeascsereasasss e

Knowledge Based System Verification and validation

as Related to Automation of Space Station Subsystems:
Rationale for a Knowledge Based System Lifecycle

K. D. Richardson, P. Friedland and C.M. Wong

Monitoring of Space Station Life Support

Systems with Miniature Mass Spectrometry and
Artificial Intelligence

R. A. Yost, J. V. Johnson and C. M. Wongccccc-.

DESIGN DATA CAPTURE

HSTDEK: Developing a Methodology for Construction
of Large-Scale, Multi-Use Knowledge Bases
Dr. Michael S. FIE€EMANccscoesssoovssscssccocsascse

Knowledge-Based Monitoring of the Pointing Control
System on the Hubble Space Telescope

Larry L. Dunham, Thomas J. Laffey, Simon A. Kao,

James L. Schmidt, and Jackson Y. Readcccecvnn

TALOS: A Distributed Architecture for

Intelligent Monitoring and Anomaly Diagnosis

of the Hubble Space Telescope

Bryant G. CIUSEceeteeoonenncncnencenorccnnnses

vi

A Knowledge-Based System for Monitoring the

Electrical Power System of

the Hubble Space Telescope

Pat Eddy ceeeee s e e et e as e et ean e 103

FAULT DIAGNOSTICS

Artificial Intelligence and Space Power
Systems Automation
D. WEEKS . vvieeeeoeeeeesssossaosnssesssnsonsssnscsssensos 109

Embedded Expert System for Space Shuttle

Main Engine Maintenance

J. Pooley, W. Thompson, T. Homsley, W. Teoh

J. Jones, and P. Lewallenccceeetevescnccnaanscs 115

Qualitative and Temporal Reasoning in
Engine Behavior Analysis
W. E. Dietz, M. E. Stamps, and M. Ali 121

Exploring Hypotheses in Attitude Control
Fault Diagnosis
Benjamin Bellccieitrieerirncnsaceneecnancsncnns 123

EUREX D: An Expert System for Failure

Diagnosis and Recovery in the TCS of the

European Retrievable Carrier EURECA

A. Kellner, W. Belau, and N. Schielowc00ee.n 131

TASK PLANNING FOR ROBOTIC APPLICATIONS

Task Path Planning, Scheduling, and Learning
for Free-Ranging Robot Systems
G. Steve Wakefieldcviiteeeansccncoenonacanasssses 137

Development of a Task Level Robot Programming

and Simulation System
H. Liu, K. Kawamura, S. Narayanan, G. Zhang,
H. Franke, M. Ozkan and H. Arimacccccceeneecen 143

Goal Driven Kinematic Simulation of Flexible
Arm Robot for Space Station Missions
P. Janssen and A. Choudryc.ciitviceerooncocns 151

Heuristic Search in Robot Configuration Space

Using Variable Metric
Ben J. H. VEIWEL .. vcercroooeenesoosonesscesononsssoesns 153

vii

PARALLEL PROCESSING

A Multiprocessing Architecture for

Real-Time Monitoring

Thomas J. Laffey, James L. Schmidt,

Jackson Y. Read and Simon A, Ka0cveetvearsncaccns 155

Expert Systems Relations in Space Applications
Michael Brady e s e e e ceseseee 161

Problem Solving as Intelligent Retrieval from
Distributed Knowledge Sources
A o) o X - « T 165

Application of Parallel Distributed Processing to
Space Based Systems
J. Macbonald and H. L. Heffelfingerccc... 171

SAFETY, RELIABILITY, AND QUALITY ASSURANCE

Spacelab Data Processing Facility (SLDPF)
Quality Assurance Expert Systems Development
Lisa Basile, Angelita C. Kellycceiceececcncccnncs 181

FMEAssist: A Knowledge-Based Approach to
Failure Modes and Effects Analysis
James R. Carnes and Dannie E. Cutts000000en 187

ESSAA: Embedded System Safety Analysis Assistant
Peter Wallace, Joseph Holzer, Sergio Guarro,
and Larry Hyattiiiiiniiiiiietrernnecccennnnns 193

Intelligent Process Development of Foam Molding

for the Thermal Protection System (TPS)

of the Space Shuttle External Tank

S. S. Bharwani, J. T. Walls, and M. E. Jackson 195

KNOWLEDGE ACQUISITION

Space Shuttle Main Engine Anomaly Data

and Inductive Knowledge Based Systems:

Automated Corporate Expertise

Kenneth L. Modesitt ittt innennsnnonnna 203

Expert System to Analyze High Frequency

Dependent Data for the Space Shuttle

Main Engine Turbopumps

Raul C. GArCia&, JIL. ..ttt ineeeeeaessanassneoceacasns 213

viii

The Use and Generation of Examples in
Computer-Based Instructional Systems
W. J. Selig and J. D. Johannesccveveeeens ceeees 221

Interactive Knowledge Acquisition Tools
Martin J. Dudziak and Jerald L. Feinstein 227

SIMULATION

Automatic Mathematical Modeling for
Space Application
C. K. WANG .ottt eencoenonasosossasasocsssosasons ceeee. 233

LISP Based Simulation Generators
for Modeling Complex Space Processes
F. T. Tseng, B. J. Schroer and W. DWancocecsee 243

Knowledge Based Simulation
P. A. Newman e eeseeanesas teseseacesessesess 249

Rapid Prototyping and Al Prdgramming Environments
Applied to Payload Modeling
Richard S. Carnahan, Jr. and Andrew P. Mendler 255

COMPUTER VISION

Orbital Navigation, Docking, and Obstacle Avoidance

as a Form of Three Dimensional Model-Based

Image Understanding

J. Beyer, C. Jacobus, and B. Mitchell cees. 261

Computing 3-D Structure of Rigid Objects
Using Stereo and Motion

Thinh Nguyenccecececonans Ceeaenes ceeeesasesess 263
Real Time AI Expert System for Robotic

Applications

John F. Follin Gt i eeeeesecesecscsrsssssnses 269

Solid Modeling for the Manipulative Robot Arm

(POWER) and Adaptive Vision Control for

Space Station Missions

V. Harrand and A. Choudryccceveeececcccccccros 271

KNOWLEDGE REPRESENTATION I
Iterative-Deepening Heuristic Search

for Optimal and Semi-Optimal Resource Allocation
Susan M. Bridges and James D. Johannes ceses 273

iX

Similarity Networks as a Knowledge Representation

for Space Applications
D. Bailey, D. Thompson and J. L. Feinsteinccc.. 279

Discovery and Problem Solving: Triangulation
as a Weak Heuristic ‘
Daniel Rochowiakc.citereeeccnenssccccsscancancns 285

Commonality Analysis as a Knowledge
Acquisition Problem
Dorian P. YEAgereceeescccosacscsnsansoasssssnsocs 291

PLANNING

Qualitative Models for Planning:
A Gentle Introduction
James D. Johannes and J. R. CAINES ...ccvcvsssonaccnns 297

Operational Aspects of a Spacecraft

Planning/Scheduling Expert System

pavid R. McLean, Ronald G. Littlefield,

and David S. BEYEI ...:.iceeceasscscnsosnccosacnssacss 303

Planning and Scheduling for Robotic Assembly
B. R. FOX tvvevevecenosssseossasnssssscsssanccss ceesss 309

Planning Activities in Space
Kai-Hsiung Changc.ccccereecececancnccsccscnns 315

INTELLIGENT MAN/MACHINE INTERFACES

Intelligent Man/Machine Interfaces
on the Space Station
Rodney Daughtreyccceceeceecrveccecnccncns .. 321

Interfacing the Expert: Characteristics and

Requirements for the User Interface in

Expert Systems

Andrew Potteriiiiiereecsccsnarsenccossocnss ceess 327

Space Languages
DAN HAYS +oveesescocaonosaoosostacesssnonansonsns cee.. 333

An Innovative Workstation
James A. Villarrealcccceevecenecocasoscssonsnssse 339

|
|

KNOWLEDGE BASE/DATA BASE MANAGEMENT SYSTEMS INTEGRATION

Conceptual Information Processing -

A Robust Approach to KBS-DBMS Integration

Allen V. Lazzara, W. Tepfenhart,

R. White, and R. Liuzzi ceseneee cesesseens cesss 345

Foundation: Transforming Data Bases into
Knowledge Bases
R. B. Purves, J. R. Carnes and D. E. Cutts 353

The Intelligent User Interface for NASA’s

Advanced Information Management Systems

William J. Campbell, Nicholas Short Jr.,

Larry Rolofs, and S.L.Wattawaccc0ve teesesss 359

SCHEDULING

An AI Approach for Scheduling Space-Station

Payloads at Kennedy Space Center

D. Castillo, D. Ihrie, M. McDaniel,

and R. Tilley cvessesacccences eeenesesseasasses 361

Scheduling Spacecraft Operations
Daniel L. Britt, Amy L. Geoffroy,
Philip R. Schaefer, and John R. Gohring ceess 371

The Resource Envelope as a Basis for
Space Station Management System Scheduling
Joy Bush and Anna Critchfield ceeeccenos eees 377

Prototype Resupply Scheduler

Steve Tanner, Angie Hughes, and Jim Byrd 383
NEURAL NETS

Neural Network Based Speech Synthesizer:

A Preliminary Report

James A. Villarreal and Gary McIntire.........cccccnn 389

The Power of Neural Nets
J.P. Ryan and B. Shah ceeecsnensen cessess 395

Neural Networks as a Possible Architecture

for the Distributed Control of Space Systems
E. Fiesler, A. Choudry, and J. VanderZijp 401

X3

KNOWLEDGE REPRESENTATION II

A Data Structure and Algorithm for
Fault Diagnosis
Edward L. Bosworthccoeveetiticrcccnnsnn

Case-Based Reasoning for Space Applications:
Utilization of Prior Experience in
Knowledge-Based Systems

James A. KiNg ..cieeueeeeeeraarescsnncccennnss

Knowledge Representation by Connection
Matrices: A Method for the On-Board
Implementation of Large Expert Systems

A. KELINOIL . vvveeeoeseecosoonosssaasssassssssnsssnssssces

RB-ARD: A Proof of Concept Rule-Based
Abort Region Determinator, IR & D 87267 26701
Richard Smith and John Marinuzzio

AUTOMATIC PROGRAMMING

A Learning Apprentice for Software
Parts Composition
B. P. Allen and P. L. Holtzman ceeeee

Automatic Program Generation from
specifications Using Prolog
Alex Pelin and Paul MOLIOW ...cciccccnccnnasss

On Acquisition of Programming Knowledge
Ashok T. AmMin ...ceerererseeeoeccocsocannnnseces

Application of Artificial Intelligence to
Impulsive Orbital Transfers

Rowland E. Burnscce.. t e o esececenscecetsenaansene

REAL-TIME APPLICATIONS

A Framework for Real-Time Distributed

Expert Systems: On-Orbit Spacecraft

Fault Diagnosis, Monitoring and Control
Richard L. Mullikinccciiieerencnnacenn

403

409

415

421

423

425

427

TES - A Modular Systems Approach to Expert System
Development for Real Time Space Application
Brenda England and Ralph Cacaceccveeerrecccscas

Prototype Space Station Automation System

Delivered and Demonstrated at NASA

Roger F. Blockcveeevsncnnne Ceeeeecectssessssssnns
Applications of Expert Systems for

Satellite Autonomy
A. Ciarlo and P. Donzellic.e.... et eareeeeeeen

Index by Authoriiiiiiettierercensssocccssnas .

xiii

N88-16361

VERIFICATION ISSUES FOR RULE-BASED EXPERT
SYSTEMS

Chris Culbert, Gary Riley, Robert T. Savely
Artificial Intelligence Section - FM72
NASA/Johnson Space Center
Houston, TX 77058

ABSTRACT

Expert systems are a highly useful spinoff of the artificial intelligence research
efforts. One major stumbling block to extended use of expert systems is the lack of
well-defined verification and validation (V&V) methodologies. Since expert systems
are computer programs, the definitions of "verification” and "validation" from con-
ventional software are applicable. The primary difficulty with expert systems is the use
of development methodologies which don't support effective V&V. If proper techniques
are used to document requirements, V&V of rule-based expert systems is possible,
and may be easier than with conventional code. For NASA applications, the flight
technique panels used in previous programs should provide an excellent way of
verifying the rules used in expert systems. There are, however, some inherent
differences in expert systems that will affect V&V considerations.

INTRODUCTION

Expert systems represent one important by-product of Artificial Intelligence
research efforts. They have been under development for many years and have
reached commercial viability in the last three to four years. However, despite their
apparent utility and the growing number of applications being developed, not all ex-
pert systems reach the point of operational use. One reason for this is the lack of well
understood techniques for V&V of expert systems.

Developers of computer software for use in mission or safety critical applications
have always relied upon extensive V&V to ensure that safety and/or mission goals
were not compromised by software problems. Expert system applications are
computer programs and the same definitions for V&V apply to expert systems.
Consequently, expert systems require the same assurance of correctness as
conventional software.

Despite the clear need for V&V, considerable confusion exists over how to
accomplish V&V of an expert system. There are even those who question whether or
not it can be done. This confusion must be resolved if expert systems are to succeed.
As with conventional software, the key to effective V&V is through the proper use of a
development methodology which both supports and encourages the development of
verifiable software.

THE COMMON EXPERT SYSTEM DEVELOPMENT METHODOLOGY

Most existing expert systems are based upon relatively new software techniques
which were developed to describe human heuristics and to provide a better model of
complex systems. In expert system terminology, these techniques are called
knowledge representation. Although numerous knowledge representation techniques

are currently in use (rules, objects, frames, etc) they all share some common
characteristics. One shared characteristic is the ability to provide a very high level of
abstraction. Another is the explicit separation of the knowledge which describes how
to solve problems from the data which describes the current state of the world.

Each of the available representations have strengths and weaknesses. With the
current state-of-the-art, it is not always obvious which representation is most
appropriate for solving a problem. Therefore, most expert system development is
commonly done by rapid prototyping. The primary purpose of the initial prototype is to
demonstrate the feasibility of a particular knowledge representation. It is not unusual
for entire prototypes to be discarded if the representation doesn't provide the proper
reasoning flexibility.

Another common characteristic of expert system development is that relatively
few requirements are initially specified. Typically, a rather vague, very general
requirement is suggested, e.g., "We want a program to do just what Charlie does".
Development of the expert system starts with an interview during which the knowledge
engineer tries to discover both what it is that Charlie does and how he does it. Often
there are no requirements written down except the initial goal of "doing what Charlie
does". All the remaining system requirements are formulated by the knowledge
engineer during development. Sometimes, the eventual users of the system are
neither consulted nor even specified until late in the development phase. As with
conventional code, failure to consult the intended users early in the development
phase results in significant additional costs later in the program.

So where does all this lead? The knowledge engineer is developing one or more
prototypes which attempt to demonstrate the knowledge engineer's understanding of
Charlie's expertise. However, solid requirements written down in a clear,
understandable, easy to test manner generally don't exist. This is why most expert
systems are difficult to verify and validate; not because they are implicitly different from
other computer applications, but because they are commonly developed in a manner
which makes them very difficult or impossible to test.

NEW APPROACHES TO DEVELOPMENT METHODOLOGIES

From the preceding section, it should be clear that the problem is the use of
development methodologies which generally do not generate requirements which can
be tested. Therefore, the obvious solution is to use a methodology which will produce
written requirements which can be referred to throughout development to verify
correctness of approach and which can be tested at the end of development to
validate the final program.

Unfortunately, it's not that simple. Some expert systems can probably be
developed by using conventional software engineering techniques to create software
requirements and design specifications at the beginning of the design phase [1]. How-
ever, the type of knowledge used in other expert systems doesn't lend itself to this
approach. It is best obtained through iterative refinement of a prototype which allows
the expert to spot errors in the expert system reasoning before he can clearly specify
the correct rules.

The goal of any software development methodology is to produce reliable code
that is both maintainable and verifiable. A software development methodology for
expert systems must serve a similar purpose as one for conventional software.
However, there are some differences between expert systems and conventional
software which will affect the development methodology. Development methodologies
for expert systems are discussed in more detail in another paper by the authors [2].
Suffice to say here that some kind of development methodology must be chosen and
applied to support effective V&V.

MAKING THE REQUIREMENTS WORK

Once we accept that requirements and specifications must be written and a
methodology for how and when to write them has been adopted, the actual work of
verifying and validating the program must be done. A very appropriate technique
would be a direct derivative of the methods used to develop procedures, flight rules,
and flight software for the Apollo and Shuttle programs. This technique consists of
Flight Technique Panels which regularly review both the procedures for resolving a
problem and the analysis techniques used to develop those procedures.

If expertise is not readily available from past experience, the analysis efforts
typically use high fidelity simulations based on system models to derive and evaluate
control parameters. If expertise is available, the knowledge is reviewed by the panel
and placed in the appropriate context. The panels consist of system users,
independent domain experts, system developers, and managers to ensure adequate
coverage of all areas of concern. In previous programs, the typical output of such a
panel was a set of flight rules describing the operational requirements for a system.

Sometimes these flight rules were translated into computer programs (typically as
decision trees) and embedded in the onboard or ground computers. An additional
verification step was needed to guarantee that the flight rules approved by the panel
were properly coded. More often, computer limitations caused the flight rules to remain
in document form used directly by flight controllers and mission crews.

For future programs, many of the flight rules which come from the Flight
Technique Panels can be coded directly into expert systems. Expert systems
developed in this manner will have undergone extensive verification through the panel
review. They should also prove easier to verify in code form because the rule
language will allow the program to closely resemble the original flight rule.

Programs of the complexity and size with which NASA regularly deals make this
approach mandatory. Smaller programs generally will not require the resources or
effort involved in verifying a system to this extent. The size of the panel and the length
of the review process can be scaled down to something appropriate for the complexity
and size of the application. For some applications, the panel approach could look very
similar to independent code review techniques.

Exhaustive testing through simulation remains the most effective method
available for final validation. However, for any system of reasonable complexity,
exhaustive testing is both prohibitively expensive and time consuming. Space Shuttle
applications typically used extensive testing with data sets representative of the

anticipated problems or failure modes. This method is not guaranteed to eliminate all
software bugs, but it can prevent the anticipated problems. If used properly,
representative testing can eliminate enough problems to make the software
acceptable for mission and safety critical applications.

The panel approach to verification discussed above is very effective at ensuring
that the knowledge in the expert system is both correct and complete. Verification of
conventional software also covers feasibility, maintainability, and testability. These
verification efforts are generally done early in the design phase and should also be
done for an expert system. The coded rules must also be examined to ensure that the
consistency and completeness of the design is properly incorporated in the software.

Some of this work can be done automatically. Testing a rule language for
completeness and consistency may actually be easier than testing conventional
programs. The explicit separation of knowledge elements from control and data
elements may allow relatively straightforward analysis of the rules by automated tools
[3]. If automated methods are not used, other standard methods such as code reviews
and manual examination of the rules may also be comparatively easy, again due to
the independent nature of the knowledge elements. They can be done by the whole
panel, or more likely, small teams of people drawn from the whole panel.

Feasibility of knowledge representation is usually fully tested in the early
prototypes, but the feasibility of other elements of the expert system, such as
performance, user interfaces, data interfaces, etc. must also be verified. The use of
rapid prototyping can be extended from testing representation to testing some of these
areas as well. lterative development can go a long way to ensuring that the final
system truly meets the user needs in these kind of areas.

Finally, the requirements must be examined to ensure that they are able to be
tested. They should be specific, unambiguous and quantitative where possible.
Objective requirements will aid in the development of rigorous test cases for final
validation. A test plan should be written which discusses how the final expert system
will be tested.

OTHER ISSUES FOR EXPERT SYSTEM V&V

There are other differences between between conventional software and expert
systems, and those differences will affect V&V efforts. Some of the differences are
discussed in reference [4] and summarized below.

Verifying the Correctness of Reasoning

Verifying that an expert system solves a problem for the right reasons is
sometimes as important as getting the right answer. For a rule-based expert system,
identifying all possible paths to a solution is very difficult. Therefore, it is important to
ensure that the expert system has gotten the right answer for the right reasons.

Verifying the Inference Engine

The inference engine in a rule-based expert systems is a completely separate
piece of code anc can be fully verified independently from the rest of the expert
system.

Verifying the Expert

This question is automatically resolved as long as the expert system is validated.
The panel approach discussed in this paper provides continual feedback on the
correctness of the experts knowledge.

Real-Time Performance

Most conventional programs provide performance "guarantees" through
extensive simulation of the expected performance environment. Expert systems can
provide the same kind of performance "guarantees". Some kinds of conventional
programs are analyzed at the machine instruction level to specifically determine the
amount of time required to process a given data set. Achieving the same kind of
capability in a rule-based expert system is more difficult, but can be done for a given
data set entered in a specific sequence.

Complex Problems with Multiple Experts

The panel review method already discussed here is clearly the appropriate
method for resolving a problem of this type. The review process used by the panel will
allow inputs from any number of domain experts and will also establish the methods of
validating system responses.

Traceability of Requirements

Tracing requirements after they have been coded in rules may be more difficult
than for conventional code, particularly when hybrid representation techniques are
used, i.e. when both rules and objects are used to satisfy the program's requirements.
This is an area that needs further consideration.

Verifying the Boundaries of the Expert System Domain

V&V of an expert system must be carefully aimed at identifying the boundaries of
a problem since the experts sometimes can not readily do so. V&V must also ensure
that the expert system fails gracefully in these circumstances.

There are additional issues not discussed in reference [4]. These are discussed
more fully below.

Reasoning under Uncertainty

Some expert system applications deal with incomplete, inconsistent, or uncertain
information. Humans do a very good job of reasoning under uncertainty, but it can be
very difficult to develop consistent models which exactly duplicate this process.
Numerous methods have been developed to allow expert systems to deal with this
type of information, such as fuzzy logic, probability methods like Bayes theorem,
Dempster-Schafer theory, certainty factors, etc. The nature of how humans use this
type of information makes it very difficult to verify in an expert system. Different people

may give different answers when presented with the exact same information. V&V
efforts must focus on two things; (1) verifying that the answers suggested in uncertain
situations are 'acceptable’ answers. The definition of ‘acceptable’ may be problem
dependent, and (2) if uncertain information is combined, the method used to provide a
certainty factor to the result must be consistent.

Maintaining a verifiable system

Long-term maintenance of an expert system is a poorly understood topic,
primarily because there is little actual experience in this area. Soloway, et al. [5]
discuss some of the difficulties in maintaining XCON, one of the largest and oldest
expert systems in use today. They point out that XCON is a very dynamic system, with
extensive changes occurring regularly. As with conventional software, most expert
systems will change and V&V must be performed each time the modified system is
released. The nature of almost all rule-based languages makes true modularization of
code more difficult than with conventional software. Therefore, rule-based systems
presently require complete retesting with every release, using a library of test cases.
Good programming practices such as using explicit control features and simple rules
are important aids, but may not be sufficient to prevent extensive retesting. This area
will be better understood when more applications reach maintenance stages.

CONCLUSIONS

Verification and validation of expert systems is very important for the future
success of this technology. Software will never be used in non-trivial applications
unless the program developers can assure both users and managers that the software
is reliable and generally free from error. Therefore, V&V of expert systems must be
done. Although there are issues inherent to expert systems which introduce new
complexities to the process, verification and validation can be done. The primary
hindrance to effective V&V is the use of methodologies which do not produce testable
requirements. Without requirements, V&V are meaningless concepts. An extension of
the flight technique panels used in previous NASA programs should provide both
documented requirements and very high levels of verification for expert systems.

REFERENCES

[1]

[2]

[3]

[4]

[5]

Bochsler, D.C. and Goodwin, M.A., "Software Engineering Techniques Used to
Develop an Expert System for Automated Space Vehicle Rendezvous",
Proceeding of the Second Annual Workshop on Robotics and Expert Systems,
Instrument Society of America, Research Triangle Park, NC., June 1986,

Culbert, C.J., Riley, G., and Savely, R.T., "An Expert System Development
Methodology Which Supports Verification and Validation", to be published.

Stachowitz, R.A. and Combs, J.B., "Validation of Expert Systems", Proceedings
Hawaii International Conference on Systems Sciences, Kona, Hawaii, January 6-
9, 1987.

Culbert, C.J., Riley, G., and Savely, R.T., "Approaches to the Verification of Rule-
based Expert Systems", Proceedings of SOAR'87: Space Operations-
Automation and Robotics Conference, Houston, TX., August 1987.

Soloway, E., Bachant, J., and Jensen, K., "Assessing the Maintainability of XCON-
in_RIME: Coping with the Problems of a VERY large Rule-Base", Proceedings of
AAAI-87, Sixth National Conference on Artificial Intelligence, Seattle, WA., July
1987.

N88-1636 2

Using Output to Evaluate and Refine Rules in Rule-Based Expert Systems*

D.C. St. Clair**, W.E. Bond, and B.B. Flachsbart
McDonnell Douglas Research Laboratories
McDonnell Douglas Corporation
St. Louis, MO

ABSTRACT

As space systems become increasingly complex and ambitious, the need for reliable expert
systems to perform monitoring and diagnostic functions becomes more critical. Rule-based
expert systems typically require large knowledge bases which must be carefully evaluated before
being used in space vehicle operations. In the evaluation/refinement process, the knowledge
engineer and domain experts evaluate expert system output and refine the rule base. The rule
base size, coupled with rule interdependencies, makes this a very difficult task.

The research described suggests a method to compare the output set (E) of a rule-based
expert system with a known set of correct conclusions (C) for a given set of input data and make
decisions on how to refine the rule base. Using the techniques presented, system developers can
evaluate and refine rules more accurately.

INTRODUCTION

Expert system evaluation/refinement attempts to insure that the conclusions of an expert
system match those of a human expert. Typically, this process is accomplished by having the
knowledge engineer input cases where behavior is known by the domain expert. The predictions
made by the expert system are then compared to the "correct" answers. Where the results differ,
the knowledge engineer works with domain experts to:

1. Locate and refine rules whose performance is questionable,

2. Identify missing rules and add them to the knowledge base,

3. Resolve conflicting rules, and

4. Remove extraneous rules.

This process is time-consuming and difficult to apply when the knowledge base is large and has
many rule interdependencies. Learning techniques suggest some methods which can be used to
expedite the process [1,3]. In particular, these techniques can be used to help isolate
questionable rules and suggest avenues which should be explored to correct the problems.

The task is to modify a set of rules of the form hypothesis implies conclusion, viz.

H->K
where H and K contain one or more propositions or negated propositions connected with
conjunctions. The components of each rule come from a description space which has been
determined by the knowledge engineer and the domain expert. Identification of the description
space is an important and difficult problem since it contains all propositions used to describe the
environment. Existing rules are refined by altering the propositions within H and/or K. New
rules are created by combining propositions from the description space. The process of
evaluation may indicate the description space needs to be expanded.

* This work was supported by the McDonnell Douglas Independent Research and
Development program.

** Dr. St. Clair is Professor of Computer Science at the University of MO-Rolla, Graduate
Engineering Center in St. Louis. He is currently on leave at MDRL.

’ PRECEDING PAGE BLANK NOT FILMeD

The use of output to evaluate and refine rules necessitates the collection of some additional
information. A trace of each rule chain producing system output along with corresponding rule
unifications must be maintained for each test scenario to allow individual rules to be evaluated.
In addition, two experience indicators must be maintained for each rule. A rule's "times fired"
statistic is incremented each time it is fired. A rule's "times correct” statistic is incremented each
time it participates in a rule chain leading to a correct system response. These statistics are used

in the evaluation/refinement process.
COMPARISON OF EXPERT SYSTEM OUTPUT WITH KNOWN RESULTS

For a specific test scenario, three different conditions can be identified by comparing the
output set (E) of the expert system with the set of known correct results (C). The three basic set
relationships are shown in Figure 1.

ENnC
Figure 1. Comparison of Output with Known Results.

Each system output conclusion, ¢; € E, is the result of expert system input causing a
chain of one or more rules to fire. Those e; € E N Crepresent rule chains which terminate with a
rule whose conclusion provides correct system response. Those ¢, € E - C represent rule chains
whose terminating rule conclusion produces an incorrect system response. Rule chains
producing such output contain one or more incomplete or incorrect rules. Elements c; € C-E
indicate incorrect or missing rules.

The comparison of sets E and C for a specific test scenario will not identify cases where
incorrect rule chains produce a correct conclusion. In many cases however, the identification of
faulty rules in such chains will occur by applying the evaluation/refinement process to nuMErous
test scenarios.

Some erroneous conditions can not be completely uncovered by comparing the contents of
sets E and C. This includes cases where set E contains conflicting conclusions. In addition,
each rule in an expert system which completely satisfies a suite of test scenarios will have
identical "times fired” and "times correct" statistics. A rule whose "times fired" statistic is zero
has not participated in the test suite.

EVALUATION/REFINEMENT OF RULES

The process of evaluating/refining rules consists not only of "fixing" incorrect or missing
rules but of identifying rules which consistently work well and removing rules which are no
longer needed by the system. The techniques described are iterative. To apply these techniques,
each scenario in the test suite is processed by the expert system. Next, system evaluators use this
output and the sets of known correct conclusions to perform the evaluation/refinement process.
Then, the revised expert system reprocesses the test suite and the results are again
evaluated/refined. Both the comprehensiveness of the test suite and the quality of expert system

10

design determine the number of times this cycle must be repeated. During each cycle, rule
experience indicators must be updated so they accurately reflect rule performance. This section
suggests ways of performing the evaluation/refinement process.

Case 1: e E-C

The rule chain leading to a conclusion ¢; € E - C represents an error of commission. It
contains one or more rules which should not have fired. The evaluation/refinement of such rule
chains requires solution of what Minsky termed the credit/blame assignment problem [4]. The
solution of this problem identifies rules responsible for incorrect system behavior.

Bundy, et al.[3] describe two basic techniques utilized by rule learning programs for identifying
the first faulty rule within a chain. The identification of multiple faults within a chain requires
repeated application of the evaluation/refinement process.

The first technique compares the actual rule chain with the chain which should have fired.
Some programs require this ideal chain as input [2] while others [5] attempt to derive it by
analysis using problem-solving and inference techniques. The first difference between the chains
indicates which rule is faulty. The necessity of identifying the ideal rule chain makes this
technique difficult to apply.

The second technique for finding a faulty rule is called Contradiction Backtracking. This
technique, developed by Shapiro [7] does not require the identification of an ideal chain.
Assuming the actual rule chain concludes with ¢, € E - C, Shapiro's algorithm begins by
examining the last resolution step which lead to e,. If the propositions which were resolved
to produce e are true, select the branch of the tree which contains these propositions as part of
the rule hypothesis, else select the other branch. Backtracking up the resolution tree is continued
in this manner until a rule from the rule base is reached. This is the faulty rule. Both Shapiro and
Bundy, et al. give examples of Contradiction Backtracking.

Once a suspect rule is located, its evaluation can lead to one of several conclusions.

1. The hypothesis of the rule is correct but the conclusion is incorrect. This situation is
resolved by correcting the rule's conclusion.

2. The hypothesis of the rule is incorrect. Offending propositions in the hypothesis are
replaced with correct ones.

3. The hypothesis of the rule is incomplete. Additional propositions must be added to the
hypothesis to restrict the firing of the rule. The process of restricting a rule's
application in this way is called discrimination [1]. The need for adding additional
propositions to a hypothesis may lead to the discovery that the description space for
the problem is incomplete.

The alteration of a rule should be done carefully since such changes are likely to effect
other chains in which the rule participates. If the values of one rule's experience indicators vary
from the experience indicators of other rules in the chain, it is highly likely at least one rule in the
chain participates in other chains.

Case2: e ENC

Since those conclusions ¢, € E N C are correct, the "times correct” statistic is incremented
for each rule in the associated chain. These statistics are helpful when trying to correct faulty
rules, since they provide a history of each rule's performance. Incrementing these statistics
indicate the rule has participated in a chain which leads to a correct conclusion. They do not
indicate that each rule in the chain is correct.

11

Case3: ¢ € C-E

A known correct conclusion ¢; € C - E represents an error of omission. This can happen
for two basic reasons:
1. A chain exists for producing this conclusion but it contains one or more incorrect
rules, or
2. No chain resulting in this conclusion exists.

Finding existing faulty chains in this case is extremely difficult unless the ideal trace is
known. In simple cases, it may be possible to find a rule whose conclusion matches c; but
whose hypothesis is incorrect. If a suspect rule can be found, its hypothesis may contain
incorrect or overrestrictive propositions. In the latter case, it may be possible to generalize the
rule by removing the overrestrictive propositions [1]. In many cases, generalization results in
combining several rules into one. Since rules being generalized may participate in other rule
chains, these chains must be examined before performing generalizations.

When no chain exists for producing a missing conclusion, one of two types of refinements
may be made. A new chain can be created which terminates with a rule whose conclusion is c;.
In many cases, the basic system architecture helps suggest how the rule chain should be created.
This process actually expands the rule base of the expert system. St. Clair, et al. [6] used this
discovery technique in an adaptive diagnostic expert system which automatically refines its
knowledge base. Alternately, it may be possible to add the missing conclusion to a rule which
has produced a correct conclusion e; € EN C. This option is viable only if €, and c; always
occur together. If this is not the case, a new rule chain should be added which terminates with
the conclusion c;.

Case 4: Other Cases for Evaluation/Refinement

Rule evaluation/refinement is incomplete as long as the system contains rules whose "times
correct” to "times fired" statistics are not equal. Such rules are members of incorrect rule chains.
If a rule is incorrect, it should be evaluated/refined as indicated above while carefully noting the
chains in which it participates. Such a rule may make a correct contribution to some chains and
an incorrect contribution to others. It may be necessary to replace rules of this type by one or
more new rules.

A rule having a small "times fired" statistic has contributed very little to the expert system's
operation. This may be due to the fact that the rule has not applied to the scenarios tested or it is
extraneous and makes little or no contribution to system performance. The former case can be
resolved by utilizing test scenarios which fire the rule. Extraneous rules occur as a result of
errors in system design or because the refinement of other rules has removed them from rule
chains. Removal of extraneous rules from the knowledge base may be desirable.

Set E must be reviewed to determine if conflicting conclusions exist. Conflicting
conclusions result when one rule chain produces a conclusion inconsistent with that of another,
for example, when one conclusion requests replacement of unit A and another requests
adjustment of unit A. The rule chain belonging to the incorrect conclusion must be refined.

Cases in which ¢, = ¢, for i #j, indicate that two or more rule chains led to the same
conclusion. This condition’'may be a result of the original system design or it may arise from
subsumption caused by use of the generalization and discrimination mechanisms described
above. Repetition of results is not always undesirable; however, it serves as an indicator that the
participating rule chains should be evaluated and those rules which are redundant should be

removed.

12

?

CONCLUSIONS

The techniques described provide an effective tool which knowledge engineers and domain
experts can utilize to help in evaluating and refining rules. These techniques have been used
successfully as learning mechanisms in a prototype adaptive diagnostic expert system [6] and are
applicable to other types of expert systems. The degree to which they constitute complete
evaluation/refinement of an expert system depends on the thoroughness of their use.

REFERENCES

1. Blaxton T. A. and Kushner, B. G., An Organizational Framework for Comparing Adaptive
Artificial Intelligence Systems, 1986 Proceedings of the Fall Joint Computer
Conference, IEEE Computer Society, November 1986, pp. 190-199.

2. Brazdil, P., A Model for Error Detection and Correction, Ph.D. Dissertation, University of
Edinburgh, 1981.

3. Bundy, A,, Silver, B., and Plummer, D., An Analytical Comparison of Some Rule-Learning
Programs, Artificial Intelligence, Vol. 27, 1985, pp. 137-181.

4. Minsky, M., Steps Towards Artificial Intelligence, Computers and Thought, E.A.
Feigenbaum and J. Feldman (Ed.s), New York: McGraw-Hill, 1963, pp. 406-450.

5. Mitchell, T.M,, Utgoff, P.E., and Banerji, R., Learning by Experimentation: Acquiring and
Modifying Problem-Solving Heuristics, Machine Learning, R.S. Michalski, J.G.
Carbonell, and T.M. Mitchell (Ed.s), Palo Alto, CA: Tioga, 1983, pp. 163-190.

6. St. Clair, D. C., Bond, W. E., Flachsbart, B. B., and Vigland, A. R., An Architecture for
Adaptive Learning in Rule-Based Diagnostic Expert Systems, 1987 Proceedings of the
Fall Joint Computer Conference, IEEE Computer Society, October 1987.

7. Shapiro, E., An Algorithm That Infers Theories From Facts, Proceedings of the Seventh

International Joint Conference on Artificial Intelligence, Los Altos, CA: William
Kaufmann, Inc., 1981, pp. 446-451.

13

N88-16363

TEMPORAL AND CONTEXTUAL KNOWLEDGE Tihamer Toth-Fejel and Dennis Heher
IN MODEL-BASED EXPERT SYSTEMS: Ford Aerospace and Communications Corporation
Ford Aerospace's Paragon Project Sunnyvale, California 84089-1198

ABSTRACT: This paper introduces Paragon, a general-purpose environment for
building model-based expert systems. The focus is on contextual and temporal
representation, with time considered a type of context.

Conceptually, a Paragon knowledge base is a highly constrained semantic network. its
interfaces enable the domain expert to make knowledge explicit, prevent the proliferation (and
potential contradiction) of preconditions found in rule-based systems, and make the
knowledge base highly partitionable for parallel processing. Paragon automatically generates
LISP code from the knowledge base. Executing this code provides a simulation that allows
the domain expert to observe the explicitly described behavior and verify the validity of the
knowledge base.

Paragon has been demonstrated in domains that are understood well enough to be
modeled, such as satellite diagnostics, ground station diagnostics, and satcom network
monitoring.

INTRODUCTION: Temporal and contextual representation in expert systems is a difficult
area in Artificial Intelligence (Al). Most expert systems consider time as a special type of
context, as does Paragon. In rule-based systems, context is represented by the premise of
each rule. Since the context in which a rule takes effect is globally referenced, the
premises of rules become longer as the knowledge base gets larger. Partitioning rules into
contextually similar sets only delays the inevitable.

At Ford Aerospace, when preliminary calculations showed that the domain of satellite
diagnostics would require more than 100,000 rules, the researchers sought another
technique [4][7]. The model-based semantic network approach, exemplified in the Calisto
project (6], seemed promising for making large problems tractable.

GOALS: The satellite diagnostics domain is well understood; however, domain experts
are still expensive and difficult to obtain. Therefore, it is desirable to train them in a minimal
amount of time (one week) and immediately place them in front of a workstation running
Paragon. Then the domain expert should describe a satellite's components, the causal and
compositional relationships between them, and their behavior in terms of states, transitions,
and events. The conceptual representation described should exhibit cognitive resonance. In
other words, not only should Paragon be user-friendly, but it should also represent the
high-level concepts and relations that the domain expert uses when thinking. Finally,
Paragon should manipulate these concepts and relations in the same way as the expert does,
thus accomplishing the intended tasks of fault diagnosis, analysis, correction, and planning in
well-understood domains. As in most Al problem areas, everything hinges on knowledge
representation.

PARAGON REPRESENTATION: The Paragon representation can be defined at five layers
[2], as outlined by Ferguson [3].

At the application layer, Paragon has been demonstrated in many domains: satellite
diagnostics, satellite network monitoring, and ground station diagnostics, with expected
demonstration of planning and pattern recognition in the satellite domain. At this layer,
Paragon enables the domain expert to specify (ie. create, name, and link) domain-specific
knowledge about batteries, heaters, their thermal and electrical relationships, commands,
procedures, and other physical and non-physical ideas. The domain expert never sees LISP-
code, and touches the keyboard only when assigning names.

At the conceptual layer, Paragon provides primitives such as Concepts (semantic net
nodes), and Relations (semantic net links). Central to the issue of knowledge acquisition,

r PRECEDING PAGE BLANK NOT FiLMzD

Paragon makes it possible for the domain expert to create user-defined, but Paragon-
constrained, Concepts and Relations.

At the epistemological layer, Paragon provides six types of concepts that can be named
and linked to other concepts (Figure 1 illustrates the examples):

1) Primitive Concepts (Primitives) represent instantiations of physical and nonphysical
objects in the real world (ie. Battery1, Switch2). They gather Attribute Concepts together
under a single name, and are the primary focus of behavior, causal relations, and
compositional relations.

2) Definition Concepts (Classes) are generic covering sets of other Primitives or
Classes, and allow the grouping of concepts by classification (ie. Battery, Heater).

3) Attribute Concepts (Attributes) describe properties of Primitives and Classes (ie.
Voltage) and contain the name, type, and value of those properties.

4) Composite Concepts (Composites) are compositional groupings of concepts (ie.
Composite Heater1 "has parts" HeatingElement and Switch2).

5) Event Concepts (Events) describe changes to Attribute values of a Primitive while in
a particular state, and are equational in nature (for example, the Voltage of Battery1 is divided
by the Resistance of Heater1 => the Current of Battery1.

6) State Concepts (States) collect the Events that occur while a Primitive is in a
particular state (ie. Charge or Discharge).

Relations (the instances of which are also called links) contain a minimal amount of
information and can be of four main types:

1) Specialization (or Classification) Relations describe the relations between classes
and their subclasses or members. For example, there exists a Specialization Relation
between Battery and Battery1. inheritance of States, Events, and Attributes can occur in
both directions along this link, saving considerable time in knowledge acquisition.

2) Compositional Relations describe the relations between concepts and their
composites and/or components. One example was given in describing Composite Concepts.

3) Causal Relations describe how Primitives affect each other. For example, Battery1
POWERS HeatingElement1. Every Causal Relation is defined by the domain expert.

4) Transition Relations (Transitions) describe conditions under which "control" of a
Primitive can switch between States, and contains a LISP expression which evaluates to true
or false.

Battery Heater
(Class) (Class)
specialization specialization
has.attribute Batteryl Electrical Heaterl

Volt
< A
(Attribute) (Primitive) causal {Composite)

haszﬁfﬁg,//”‘\N\\\IEEéstate has.pazz///\\\QS?.part
Charge trans?1 tion Discharge

Heating—Elemen i
(Stace) (state) A P Thizive) 1 (531:§5£51)

S ransiti
ransition
has.event has.event has.statﬁ{/\\\ggs.state

Volt+.1 => Volt Volt-.1 => Volt
(Event) (Event) {State) (s?:r,fe)

Figure 1. Paragon Knowledge Base

One of the most important aspects of Paragon with respect to contextual
representation is that it enforces the principle of locality. This principle constrains access to
information by requiring an explicit relation to be defined between concepts [3]. An Event
can affect only one local Attribute, and while it can access all the other Attributes of the
Event's Primitive, it can only access external attributes through explicit causal relations that
are associated with the Event's Primitive. Transitions are constrained by the same principle.

The logical layer can be interpreted as describing how Paragon handles the ANDing and
ORing of multiple relations and concepts. For example, if two concepts are electrically

16

connected by a number of digital electrical lines, then the domain expert can model it either
with a single electrical relation, or many.

At the implementation layer, LISP hash arrays were used to represent both concepts and
relations, while all Paragon interface and core functionality was implemented in LISP. For
reasons of practicality, additional liberties were taken to compromise the "pure" Paragon
representation with frame-based constructs.

After the domain expert finishes describing each piece of the domain, Paragon
generates a simulation model in LISP source code. This code can then be executed, and its
behavior observed via graphic active images and values. The model can be tested as if it
was a piece of physical hardware, and if it demonstrates the same input/output functionality
as a good device, then the domain expert knows that the knowledge base is correct [8].
This is a bold but unsupported claim. The developers of Paragon have not been able to
mathematically prove truth preservation or logical correctness. However, humans seem to do
intellectual tasks quite well without such rigorous proofs, and even computer programs have
been quite useful without strict logical foundations. In the experience of Paragon users, a
mistake in the description can appear either as wildly oscillating behavior or as no behavior
at all. In other cases, the description error and resulting mis-modeling is more subtle, just as
in physical hardware.

Faults are not modeled in Paragon, because such modeling would be self-defeating.
This is because a device can fail in many more ways than it can work properly. The lack of
fault models has not proven to be a handicap, because Paragon reasoning modules can
pinpoint faults to whatever level the domain has been modeled. Gurrent research on causal
analysis and planning indicate that the Paragon representation is ideal for determining the
cause of failures, and possibly even for finding recovery procedures, though some very high
level of fault representation may turn out to be useful.

CONTEXTUAL REPRESENTATION: In a Paragon Knowledge Base, every object of the
target domain is represented by a Primitive. This Primitive may have many States, with
different Events changing their corresponding Attribute values differently in each particular
State. In the example illustrated in figure 1, Battery1 has States Discharge and Charge, each
containing an Event which modifies the value of Volt. The Process Definition Interface allows
the domain expert to specify States and Transitions between States. There are two
Transitions connecting Discharge and Charge, illustrated by ?> (conditionally true) and ?|
(conditionally false).

To keep the simulator from endlessly looping through states via these transitions, the
domain expert must specify the conditions (or context) under which the transition will occur,
assuming that the Primitive is currently in the "from" state of that particular transition link. In
many ways, this condition is similar to the premise of a rule, and caution must be exercised
to prevent the proliferation of precondition clauses (that define a context) and the
"ad-hoc-ness" that results from too much flexibility.

The purpose of the Context Specification Interface (CONTXSPEC) is to address the
above problem by enforcing the principle of locality. At the implementation level,
CONTXSPEC outputs a condition -- a piece of LISP code that evaluates to either true or
false. On the input side, CONTXSPEC must satisfy the same four criterion that any
representation of reality must provide [6]:

1) Completeness - represent all relevant and necessary knowledge in the domain.

2) Precision - provide appropriate granularity of knowledge.

3) Clarity - lack ambiguity in interpretation.

4) Cognitive Resonance - use the same concepts the domain expert does.

CONTXSPEC satisfies the criterion of completeness by providing the domain expert

with relational operators (=, <, >, etc) and local Primitive Attributes (Voltage of Battery1,
Temperature of HeaterA). Only Attributes of the States' Primitive and those passed in by

" 17

causal links can be accessed, in accordance with the principle of locality. This principle of
locality limits communication between concepts by requiring all cause/effect relationships to
be specified. While very frustrating at times, this strict limitation engenders a number of
significant advantages:

1) When the domain expert wants to access a non-local Attribute, but CONTXSPEC
doesn't provide that access, then he or she will realize that a causal relation has not yet
been made explicit.

2) Prevents the proliferation of preconditions by tying the context to the location of
the nodes and links within the semantic net.

3) Makes each transition self-contained with no side-effects, a property that makes the
Paragon KB ideally suited for parallel processing.

4) Finally, the principle of locality restricts the impossibly large number of attributes
CONTXSPEC must otherwise display to a manageable number.

By mousing four times, the domain expert can specify a simple condition such as "The
Voltage of SolarArrayt is > 10", while CONTXSPEC prevents low-level errors such as
mistyping or selecting the wrong menu. Most of the conditions in Transitions are this simple,
though much more complicated ones are possible with logical operators AND, OR, and/or
NOT. Most of the complexity ends up in the state graph, with its multiplicity of states and
possible transitions. If the state diagram is too complicated, this is an indication that the
concept should be broken down into its components, or that some states may be merged,
unfortunately at a loss of modeling detail. Internally, this condition is represented by a
case-grammar-like sentence, which is very easy to translate to LISP, establishing a condition
in a Transition between two States. This condition can be true or false, depending on the
overall state of the world, or in this example, the value of the Attribute Voltage of the
Primitive SolarArray1. The evaluation of Events during the execution of simulation code
causes Attributes' values to change.

Originally, Paragon gave the domain experts the capability to represent complex
equations inside the Transition's conditions. Unfortunately, equations hide large amounts of
implicit knowledge. Therefore Paragon was changed to prevent the domain experts from
entering equations anywhere except in the Events. This increased difficulty in knowledge

acquisition was caused by the necessity to break up complicated fomulas into
representations more amenable to automated reasoning.

TEMPORAL REPRESENTATION: Reasoning about time is presently a very debated issue
in Al. However, some ideas are generally agreed upon, for example Allen's relations on
convex time intervals [1]. Early in Paragon's development, sets of algebraic mappings were
found between any two intervals to produce a third interval (ie. Plus, Minus, Cross-Product,
etc). With a set of relations and mappings, it was assumed that a useful algebra could be
integrated into Paragon. The Temporal Specification Interface (TS!) was developed to quickly
specify complicated temporal expressions. Unfortunately, a non-trivial algebraic group for
time intervals was not found; fortunately, this lack of success didn't matter. During the
development of TSI and the search for a temporal algebraic group, the domain experts used
Paragon concepts to simulate clocks and timers whenever they needed them. Upon closer
examination, it was found that Allen's relations could be implemented in Paragon at the
Attribute-State-Event level, so TS| was never integrated into Paragon. In addition, Paragon
has the ability to do multi-interval comparisons, which Ladkin showed to be infeasible when
representing at the interval-relation level [5].

it turns out to be quite simple to set up very complicated timed, conditional or
asynchronous cycles (or non-cyclic temporal state changes) in the state transition graph of a
Primitive. For example, to simulate the sun-shade cycles that a solar array experiences in
orbit, the Primitive SolarArray1 has an Attribute Clock, which is reset in States StartShade
and EndShade by identical Events (0 => Clock) and set by (Clock+1 => Clock) in States Sun
and Shade. The description of SolarArray1's behavior is completed by specifiying
theTransitions to become true when Clock values are equal to 51 and 39 respectively.

18

As in most rule-based systems, temporal representation is a special case of context in
Paragon. This is because at a certain level of granularity and ignorance, time (and context)
can be considered a cause. In a rule, the premise can be thought of as causing the
consequent. This paradigm may lead to the nonsensical belief that Monday causes Tuesday.
Well, not exactly. The events that occur during Monday (like the passage of time) cause the
Transition between Monday and Tuesday to become true, allowing the change of state.

Given ignorance of the structure of the solar system and of the naming convention regarding
24-hour periods, it is perfectly acceptable for automated causal diagnosis to conclude that
Monday causes Tuesday.

CONCLUSION: This paper presents a basic paradigm that allows representation of
physical systems, with a focus on context and time. Paragon provides the capability to
quickly capture an expert's knowledge and represent that knowledge in a cognitively resonant
manner. From that description, Paragon creates a simulation model in LISP, which when
executed, verifies that the domain expert did not make any mistakes. The Achilles hee! of
rule-based systems has been the lack of a systematic methodology for testing, and Paragon's
developers are certain that the model-based approach overcomes that problem. The reason
this testing is now possible is that software, which is very difficult to test, has in essence
been transformed into hardware.

REFERENCES

[1] Allen, J., Maintaining Knowledge about Temporal Intervals, Readings in Knowledge
Representation, edited by Brachman, R., and Levesque, H., Morgan Kaufmann, 1985, pp.
510-521.

[2] Brachman, R., On the epistemological Status of Semantic Networks, Readings in
Knowledge Representation, edited by Brachman, R., and Levesque, H., Morgan Kaufmann, 1985,
pp. 191-215.

[3] Ferguson, J. C., Beyond Rules: The Next Generation of Expert Systems,
Proceedings of the Air Force Workshop on Al Appilications for Integrated Diagnostics, May 1987.

[4] J. Ferguson, R. Siemens and R. Wagner, Starplan: A Satellite Anomaly Resolution
and Planning System, from J. Kowalik, ed., Coupling Symbolic and Numerical Computing in
Expert Systems, pp. 273-281.

[6] Ladkin, P., Time Representation: A Taxonomy of Interval Relations, AAAI-86
Proceedings, August 11-15, 1986, pp. 360-366.

[6] Sathi, A, Fox, M., and Greenberg, M., Representation of Activity Knowledge for
Project Management, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
PAMI-7, No. 5, September, pp. 531-552.

[7] Siemens,R., Golden, M., and Ferguson, J. C., "Starplan II: Evolution of an Expert
System", AAAI 86 Proceedings, pp. 844-850.

[8] Toth-Fejel, T.T., Self-Test: From Simple Circuits to Self-Replicating Automata,
Master's Thesis, University of Notre Dame, 1984, pp. 160-161.

19

N88-16364

METHODOLOGY FOR TESTING AND VALIDATING KNOWLEDGE BASES

C. Krishnamurthy, S. Padalkar, and J. Sztipanovits
Center for Intelligent Systems

Vanderbilt University, Nashville, Tennessee

B.R. Purves

Boeing Aerospace Company, Huntsville Alabama

ABSTRACT

The paper describes a test and validation toolset developed for
artificial intelligence programs. The basic premises of this method are:
(1) knowledge bases have a strongly declarative character and represent
mostly structural information about different domains, (2) the conditions
for integrity, consistency and correctness can be transformed to struc-
tural properties of knowledge bases and (3) structural information and
structural properties can be uniformly represented by graphs and checked
by graph algorithms. The interactive test and validation environment have

been implemented on a SUN workstation.

ED
- :zcEDING PAGE BLANK NOT FILM

21

INTRODUCTION

Testing and validation is the ultimate precondition for the applica-
tion of artificial intelligence (AI) technology in space systems. In spite
of its cbvious significance, testing and validation have been a neglected
topic in AI research. The results being reported are quite contradictory.
Some authors have pointed out that certain knowledge-based systems, such
as expert systems, are inherently untestable and unreliable, while others
argue that software validation is easier for knowledge-based systems than
for conventional programs.

The first section of this paper summarizes our results in the evalua-
tion of AI technology from the aspect of software engineering. An impor-
tant conclusion of this analysis is that clear separation between Al
systems (expert systems, natural language systems, etc.) and Al techniques
(declarative programming, synmbolic programming, etc.) is necessary. It has
been shown, that the well-known difficulties in testing and validation are
inherent nature of the functionality of specific AI systems and do not
stem from the implementation technology. Most importantly, the basic AI
techniques offer new opportunities in software testing and validation,
which can dramatically improve the test technology of complex software
systems.

The second section of the paper describes a test and validation
toolset developed for Al programming. The basic thrusts of the selected
methodology are: (1) knowledge pases have strongly declarative character
and represent mostly structural information about different domains, (2)
the conditions for integrity, consistency and correctness can be trans-—
formed to structural properties of knowledge bases and (3) structural
information and structural properties can be uniformly represented by
graphs and checked by graph algorithms.

An interactive test and validation environment has been implemented
on SUN workstation. The knowledge representation paradigms for which test
and validation methods have been developed include: rule-based systems and
object-oriented programming. The application of the methodology is
presented for testing structural properties of object-oriented programs.

RACKGROUND
The problems of testing and validation can be examined only in the
context of the system to be tested and validated. Therefore, clear dis-
tinction must be made between systems that are built using AI and the
techniques developed and used in Al programming.

1. AI Systems and AI Techniques

One of the widely accepted, generic objectives of AI is to con-
struct intelligent agents (Newell, 1982). Intelligent agents can
operate autonomously in a task environment, are able to recognize
their situation by means of the perceptual components, and are able to
plan their actions according to a goal structure by means of their
general knowledge. These capabilities are also manifestations of human
intelligence, i.e., the primary objective of AI systems is to mimic
human intelligence. T

22

ORIGINAL PAGE IS
The AI systems wﬁ%hp%%ngé%é}'\}gd the largest publicity in
recent years are expert systems. Their primary purpose is to represent
human knowledge symbolically and "operate” on the knowledge by using
automated reasoning methods. Some of the most important aspects of
expert systems that have attracted considerable attention are:

- ability to capture rare and expensive human expertise and make it
available,

- ability to reliably operate in fuzzy, unexpected situations,

- ability to implement heuristics,

- ability to explain actions for users.

While seeking a better understanding of human intelligence and
implementing systems that exhibit "intelligent" behavior, research in
AT has discovered a number of novel software techniques and tools.
These techniques and tools have proven to be extremely useful in a
numper of application domains struggling with construction of highly
complex systems. More importantly, AT techniques have provided methods
to use computers for symbolic, qualitative "computations," which have
the immediate potential for building new generations of application
systems in areas such as instrumentation and process control. The
approach, which focuses primarily on AI techniques and not so much on
the scientific objectives of AI, (i.e., understanding and imitation of
human intelligence) is often referred to as AI engineering (Allmen-
dinger, 1986).

It would be difficult to enumerate all of the new software tech-
niques originated and elaborated by AI research. Here we discuss only
declarative programming, which is widely used in the implementation of
intelligent systems.

Conventional programming 1is essentially imperative, 1i.e.,
programs describe the sequence of steps that are necessary for solving
a particular problem. We may state that imperative programs primarily
represent "how to" knowledge. In imperative programming the programmer
is responsible for transforming the problem definition ("what to")
into its solution of imperative style.

Declarative programs describe the declarations of problems rather
than their solution. The basic technique used in declarative program-
ming is to build "smart" interpreters that can transform the declara-
tions into "how to" knowledge. The key components of declarative
programming are (1) the problem-specific representation language,
which is used for cescribing the problem and (2) the corresponding
interpreter.

Well-known programming paradigms that are strongly declarative
are:

- logic programming, where programming occurs in the form of declar-
ing objects and their relations, (a well known example of logic
programming languages is, of course, Prclog),

- rule-based programming, where the knowledge is expressed primarily
in rule format (e.g., ART, KEE, etc.),

- constraint-based programming, which includes the declaration of
objects (e.g., variables) and the constraints (e.g., arithmetic

23

constraints) among them.

Declarative programming is widely used in constructing knowledge-
based systems. The "knowledge base" is usually the declarative com-
ponent while the interpreter is the procedural component of these
systems (e.g., the rule pase is the knowledge base, the inference
engine is the interpreter in the case of rule-based expert systems).

Testability in AT Programming

Whether we approach Al programming from the side of specific AT
systems (e.g., expert systems) or from the side of AI programming
techniques (e.g., declarative programming), we can identify sig-
nificantly different views concerning testing and validation.

From a functional point of view, expert systems try to mimic
human expertise. The basic conceptual and practical problems stemming
from this fact are clearly described by Lane, 1986.

a. Testing requires design specifications. Lane’s observation is that
specifications for expert systems, against which system perfor-
mance can be evaluated "are almost universally lacking in current
expert system developments.” The probable reason is that though
the concept of expertise is intuitively clear, it is impossible to
give a unique specification for it (at least presently or in the
immediate future). Obviously, the "yle-set” of rule-based expert
systems can be considered only as a '"model" of expertise, rather
than its specification. He suggests the development of new methods
for setting design requirements and system specifications that
should be based on an improved understanding of the roles of
expert systems in complex systems.

b. Performance is dependent on the scenario. A well-known problem of
current and near-future expert systems is that their performance
degrades dramatically at the "poundary of their knowledge base."
Contrary to human experts, expert systems are unable to detect
their limits so as to avoid catastrophic failures and to degrade
gracefully in new or marginal conditions. Lane points out that
except in the relatively simple cases, when the "expert system” is
actually the implementation of a well-defined decision tree, the
performance evaluation of expert systems has an "inherent
dilemma." A possible method of testing is to sample the scenarios
and conditions, and evaluate the system performance in specific
situations. This method can fail to detect even potentially
catastrophic outcomes. The other alternative 1is systematic
enumeration of all possible input conditions, which is unrealistic
in most cases due to time and cost.

Test approaches can help in the development of expert sys-
tems, but cannot resolve the problems mentioned above (Gashing et
al., 1983).

The declarative character of the knowledge bases offers new
opportunities for testing some of their structural and logical
features. Validation methods are presented in Stachowitz et al.,
1987; Nguyen, 1987; and Suwa et al., 1982; for checking inconsis-

24

tency, completeness, redundancy, etc., of rule bases. It should be
mentioned that these tests cannot guarantee functional correctness
but can offer significant help in detecting potential problems.

GENERIC TEST AND VALIDATION METHODOLOGY FOR KNOWLEDGE BASES

The basic thrust of our methodology is that the primary implementa-
tion technique for knowledge-based systems is declarative programming. As
we have previously discussed, declarative programming includes three
different program components, which are:

- interpreter,
- typically small imperative components, and
- declarations.

The interpreter and the imperative components are basically conventional
programs that can be tested and evaluated by using well elaborated
software engineering methods and techniques. In this sense, testing and
evaluation of declarative programs does not differ from that of the con-
ventional programs. The major difference is that the complexity of decla-
rative programs is mostly concentrated in the declarations constituting
the "knowledge base" of the system to be tested. Below we summarize some
of the new opportunities emerging for testing and validation of declara-
tive programs.

1. Automatic Proof of Correctness

Declarative programs are typically symbolic representations of
structures. It 1is possible to implement automatic reasoning processes
that can prove various properties of the structures represented.
Requirements, such as:

"The fan-out must be less than or equal to 20," or
"Two active outputs cannot be connected"

can be easily checked on the declarative representation of a digital
circuit simulator program. In other words, the functional correctness

of the simulator can be tested by using automatic, high-level tools.

2. Mathematical Modelling

The structure of declarative programs can be mapped into graphs
and different structural properties can be checked by wusing graph
algorithms. E.g., causal networks which are used in failure mode and
effect analysis can be tested for cycles; physical structures can be
tested for connectivity; signal-flow structures can be tested for
loops, etc. Graph algorithms can be used for testing the equivalence
of different declarative programs, which is a unique possibility.
(Proving the equivalence of imperative programs is an extremely com-
plicated problem.)

3. Graphic Tools

Since declarative programs typically represent structures, they
can be represented by graphic tools, and can be synthesized by inter-

25

active graphic editors.

Although, these opportunities have been recognized and exploited
in some of the test and validation techniques mentioned before, their
common feature is that the actual implementation is closely coupled to
a particular knowledge-based system and knowledge representation
language (Stachowitz, 1987).

Our goal was the development of a generic methodology and
programming environment which effectively supports the testing and
validation of different kinds of knowledge-based systems. The
rationale behind this goal is the recognition that knowledge-based
systems include multiple knowledge bases and are described in dif-
ferent representation languages.

The generic test and validation method can be summarized as
follows.

let us suppose, that L is the representation language and P is a
set of declarations written in L. The general steps of validating the
knowledge base are the following:

Specification of test criteria. By analyzing the specific nature
of the knowledge base, a relevant set of test criteria [c(l),
c(2),...,c(n)] has to be defined. The individual test criteria should
be assertions on the structural properties of the knowledge base.

Specification of mapping rules. Depending on the semantics and
syntactics of L, and the way the test criteria can be expressed as
abstract graph properties, mapping rules (M) are defined. The rules
maps P into a labelled, directed graph M(P)->G(V,E). The labels of the
vertices and edges of the graph: v{a(l), a2),...,am] and
ela(l),a(2),...a(j)] are attributes that are extracted from P and
associate the nodes and edges with its semantic entities.

Specification of user interface. The actual test proceeds by
mapping the knowledge base (or certain sections of the knowledge base)
into graphs and checking the test criteria by running graph algo-
rithms. The results of the tests are presented by using a knowledge
base specific graphic interface.

STRUCTURE OF THE TEST AND VALIDATION ENVIRONMENT

The methodology described above makes it possible for the design of a
test and validation environment (TVE) where the common components are
clearly separated from those which are unique to specific knowledge bases.
The ultimate benefit of this separation is that the system can be easily
adapted to different problems and representation languages and can provide
a unified environment for testing and validating knowledge bases.

The structure of the TVE can be seen in Figure 1. The MAPPER accepts
the knowledge base to be tested from the user and maps it into a graph.
The ANALYZER runs a set of graph algorithms and outputs the results to the
user. The analysis process is interactive and supported by graphics. The
ANALYZER KERNEL constitutes the common part of TVE. It provides a set of

26

MAPPER

ANALYSER

ANALYSER KERNEL

GRAPHICS

Figure 1: Functional Structure

27

services to build, represent and analyze graphs. The summary of the inter-
faces of the analyzer kernel can be seen in Tables 1, 2, and 3.

The Mapper Interface includes two sets of calls. One of them is used
to parse the input source file which contains the knowledge base. The
other set is used to create and modify graphs. The Analyzer Interface
provides access to the library of graph algorithms which are the basic
building blocks for implementing test and verification procedures.

The selection of graph algorithms is continuously expanded as new
testing and validation methods are developed for different knowledge
bases.

The third group of kernel calls facilitates generation of user inter-
faces. In order to help the user in navigating through complex structures
and in analyzing structural properties, extensive color graphics are used
with a sophisticated window system. The services provided by the graphics
interface are summarized in Table 3. The interactive graphics interface
makes it possible (1) to represent the entire graph, (2) to zoom into
certain areas, (3) to select nodes and edges by using a pointing device
and to display the corresponding semantic entity of the knowledge base in
a text window, and (4) to start various analysis processes through a
hierarchically organized menu interface.

IMPLEMENTATION

TVE has been implemented on a SUN 3/110 workstation by using the
Sunview graphics package. The system is decomposed into two communicating
processes (see Figure 2). The Analyzer and Mapper functions run as a LISP
process. The appropriate kernel interface functions are written in C and
are embedded in the LISP environment. The advantage of this solution is
that the knowledge base specific components of the Analyzer and Mapper can
be more conveniently implemented in LISP than in other available
languages.

The graphics interface runs as a separate graphics process which
communicates with the LISP process through UNIX pipes. After receiving a
user command, it is decoded and the appropriate function call is sent to
the LISP process to service the request.

Separation of the graphics interface from the other components of the

system ensures the portability of TVE to other workstations, with dif-
ferent graphics capabilities.

APPLICATION EXAMPLE: TESTING AND VALIDATION OF OBJECT-ORIENTED SYSTEMS

Object-oriented programming has the virtue that hierarchical system
declarations and properties, such as structural and functional in-
heritance, can map quite naturally into this programming methodology.

Typically, most of the useful object-oriented systems tend to become
very large and, after a point, manual structural testing becomes extremely
difficult, if not impossible. The TVE provides an automated, interactive
test environment, with extensive graphics support, for the structural

28

Table 1. Mapper Interface

|
I FUNCTION
I

I
PROCEDURE CALLS | DESCRIPTION

|Parse input
I
I

specific to the representation language] |stores text information

I

|

I

| [Internal set of macros |Builds symbol tables,
I

I I

|Create graph
I
I

| create-node (attributes) |creates a list of nodes
| create-edge (attributes) |edges, and graph adjency lists
I I

Table 2. Analyzer Interface

FUNCTION

I
PROCEDURE CALLS I DESCRIPTION

I
I
|
[Detect cycles
I

I

cycles (graph) | finds node-chains which form
|cycles in the graph
| I

I
|
I |
I
|

|[Find connected |find-connected-components (graph) |finds a spanning forest for
| components f |the graph

| I I

|Find nodes | find-group (graph attributes) Ipartitions the graph based on
imatching cer- | Ispecific attributes of nodes
[tain attributes| |or edges

| I I

|Describe node |display-node (node) |displays all attributes of

| | la node

| | I

|Access nodes |gen-lower-tree (node) lgenerates sub-tree

| | gen-upper-tree (node) frooted at this node

Table 3. Graphics Interface

I I

I FUNCTION | PROCEDURE CALLS DESCRIPTION

I I I

|Menu-based | [executive calls] fconverts analysis requests

| input [| from graphics process into
I

lanalyzer function calls
I I

|Graph layout
|generators
|

Ihierarchy (graph root), bipartite (graph) |draws nodes and edges on
Itree (graph root) | screen
I I

[Highlight sec-

thighlight (path graph) [executive calls] |highlights cycles, displays

ltions of graph | Itext, zooms on sections of the

I |graph
| I

29

|
I
I
I
[
I
I
I
I
I
I
I
I
I

INPUT

MAPPER

ANALYZER

EXECUTIVE

A/

LISP — C Interface

LISP — C Interface

Graphics Routines
&

User Interface

}

USER

Figure 2 : Structure of Implementation

30

testing of large object-oriented systems.
Currently the facilities provided by the TVE are:
1. Generating the inheritance hierarchy for the entire system.

2. Generation of the inheritance tree for specific object classes in the
system.

3. Detection and highlighting of cyclic inheritance of cbject classes.
4. Detection of missing class and method definitions.

5. Detection of conflicting method definitions (i.e., an object inherits
methods of the same name from two different classes, but these two are
in no way connected, i.e., they lie on two different paths in the
inheritance tree.)

The sequence of actions performed is as follows:

The MAPPER accepts the object-oriented system written in a particular
object-oriented programming language as input, and maps it into a graph.

Each object class in the system is mapped onto a node in the graph,
and edges are defined as follows:

If an oblject class A inherits(includes) the class definition of
object class B , then there is an edge from the node representing class A
to the node representing class B. With this simple algorithm the entire
graph is built. The current system implements a mapper for a Flavors-like
object-oriented system, and uses the same algorithm as Flavors to deter-
mine method inheritance. The difference is that all information is ex-
plicitly displayed to the knowledge engineer, before expensive dynamic
testing takes place.

For example, in Flavors, cyclic dependencies of objects are avoided,
but the knowledge engineer is not notified. In the TVE all cycles are
explicitly displayed.

On building the entire graph, the mapper terminates, and control
passes to the executive which creates and communicates with the graphics
server.

The graphics server, on creation, generates a window for the user
interface. This window consists of a panel of test options, and a large
canvas for displaying the graph generated for the system. An additional
text sub-window is created for display of textual information about the
system (e.g., object definition or list of inherited methods) .

The user can now select any test option by simply selecting that
option from the panel with a pointing device. This selection is communi-
cated to the executive who, in turn, invokes analyzer routines to carry
out the test. Information about any object in the system is obtained
simply by pointing at the corresponding node in the graph.

TVE has also been used for supporting the static analysis of large

31

rule-based systems. Specifically, it has been successfully tried on a rule
pase containing approximately one hundred OPS5 rules.

CONCLUSIONS

The purpose of this paper was to discuss some of the software en-
gineering aspects of Al programming and to describe a method and cor-
responding tools developed for testing and validating knowledge bases. The
essence of the method is that the criteria for correctness is expressed in
the form of structural properties and checked by using various graph
algorithms.

The conclusion of our analysis was that the result of the evaluation
depends on the approach to Al programming. Testing and validation of
certain AI systems which try to mimic manifestations of human intelligence
(e.g., expert systems) may be quite problematic because of the inherent
difficulties in specification and performance evaluation. On the other
side, programing techniques which are generally used in AI programming
(e.g., declarative programming, symbolic programming, etc.) offer new
opportunities for testing and validating the "knowledge base" of complex
systems. These opportunities serve as one of the main incentives to use Al
programming techniques in the design and implementation of complex sys—
tems.

This conclusion is quite contradictory to the often emphasized view,
that AI techniques are "unsafe" compared to conventional programming
techniques. The fundamental feature of knowledge-based systems 1is that
most of the complexity is concentrated in their knowledge base. The
dominantly declarative character of knowledge bases allows the application
of automatic testing and validation techniques that can significantly
improve the safety and reliability of large software systems.

REFERENCES

Allmendinger, G., "AI: Can Performance Match the Promise?," InTech, pp.
45-50, April, 1986.

Gashing, J., et al., "Evaluation of Expert Systems," in Building Expert
Systems, F. Hayes-Roth, D.A. Waterman, and D.B. Lenat, eds., Addison
Wesley, 1983.

Lane, N.E., "Global Issues in Evaluation of Expert Systems," Proc. 1986
International Conference SMC, pp. 121-125, 1986.

Newell, A., "The Knowledge level," Artificial Intelligence 1:87-127, 1982.

Nguyen, T.A., "Verifying Consistency of Production Systems," Proc. of The
Third Conference on AI Applications, pp. 4-8, 1987. T

Stachowitz, R.A., et al., "Validation of Knowledge—-Based Systems," Second
ATAA/NASA/USAF Symposium on Automation, Robotics and Advanced Comput-
ing for the National Space Program, 1987.

Suwa, M., et al., "An Approach to Verifying Completeness and Consistency

32

N88~16365
CLIPS AS A KNOWLEDGE BASED LANGUAGE

JAMES B. HARRINGTON
HONEYWELL SPACE AND STRATEGIC AVIONICS DIVISION
CLEARWATER FL 34624-7920

ABSTRACT

CLIPS is a language developed by Johnson Space Center (JSC) for writing expert
systems applications on a personal or small computer. The CLIPS language was Writ-
ten in the C programming language and JSC made provisions to call CLIPS from, or
embed CLIPS within, a control or applications program. This paper will look at some
of the salient characteristics of a knowledge based system (KBS). The capabilities of
CLIPS will be discussed in light of these characteristics, and the KBS characteristics
of CLIPS will be compared with those of LISP, Prolog, and OPSS.

INTRODUCTION

The intent of this paper is to describe the CLIPS programming language and
compare it to three other artificial intelligence (AI) languages (LISP, Prolog, and
OPS5) with regard to the processing they provide for the implementation of a KBS.
The paper will conclude with a discretion of how CLIPS would be used in a control
system. The definition of many of the commonly used terms in the field of Al
languages will be found in this paper.

PROGRAMMING LANGUAGES

Several languages have been developed to enhance the building of KBS by
providing a direct method of encoding both data and procedural knowledge
(procedural knowledge is the knowledge of how to act on the data). The major
requirement for a language to be used for developing a KBS is that it handle strings
of characters or "symbols" as well as numbers. For the above reason Pascal and C are
more favored, among the "standard" programming languages, for developing expert
systems than is FORTRAN or assembly language. Several languages have been
developed specifically to enhance the capability to deal with symbols; of these
languages, this paper will deal with only LISP, Prolog, OPSS, and CLIPS.

The most common language for developing AI applications is LISP. LISP stands
for LISt Processing language. It was based on John McCarthy's work on nonnumeric
computation published in 1960. LISP itself does not have any constructs that provide
for explicit encoding of data and procedural knowledge, however, LISP is an
excellent symbol processing language and provides a rich set of tools that can be
used to develop the constructs desirable for a KBS.

Prolog is a relatively new language that has been developed for AI applications.
Prolog stands for Programming in Logic. It was one of the first attempts to structure
a language that would enable a programmer to specify his tasks in logic rather than
in conventional programming methods. Prolog was created by Alain Colmerauer and
his associates at around 1970.

The name OPSS5 stands for Official Production System, version 5. As one might
expect, OPS5 grew out of set of OPS languages. The pilot system developed in OPS5 was
"R1" for Digital Equipment Corporation (for the VAX Expert System (ES)
configuration tool). C. Forgy and J. McDermott, of Camegie-Mellon University, were
responsible for the development of the OPS5 language.

33

CLIPS is the most recently developed language of the set to be discussed in this
paper. CLIPS is a Forward Chaining rule based system. It is being developed by the
Johnson Space Center's Al section, Mission Planning and Analysis Division, as a lan-
guage suitable for ES development and delivery on conventional computers (ie. the
IBM PC, VAX, etc.) and is intended for embedded applications. CLIPS was originally
created by Frank Lopez around 1985 and reworked for release to the public by Gary
Riley [Culbert 86]. CLIPS is an acronym for C Language Integrated Production
System.

KBS CONCEPTS

A KBS is a program or system that uses a base of knowledge to determine the
program output. A KBS language is one that enhances the capabilities of combining
data and production rules to obtain a meaningful output. The following sections
describe some of the main concepts or characteristics of a KBS.

KBS vs Conventional Languages

A KBS language could be described as a language based on a set of rules that act
like functions in a conventional language. These rules are triggered by data (or
facts) rather than program flow. All of the facts are examined by the rules on a
continuous basis. Hence the KBS code need not execute in the logical flow that it was
written. There are often mechanisms for controlling the flow of rule activation
(executing a given rule in a KBS) but in general, if the order that decisions are made
can be predetermined, and remain constant regardless of the data, then a
conventional programming languages would be a more appropriate selection.

Another important difference in the Al languages and conventional
programming languages is the way variables a handled. In the AI languages the
variable only has meaning within the particular rule in which it is located, there are
no global variables. The only method available for "passing parameters” is by
asserting a new fact on the fact list.

Al Facts

A fact can be a single element or a list of elements. Each indivisible element in
a fact is called an "atom". One of the main reasons that LISP has became so popular
for AI applications is because of its built in capability to work with lists.

Table 1 is a summary of the capabilities of each language to represent facts in
the knowledge base. The "Argument Format" column specifies weather the element's
value is based on its position in the fact list (positional) or is based on keyword
recognition. The "predicate” column refers to the association of an atom within the
fact to a header or a name; CLIPS is the only language that does not directly provide
the capability of relating atoms to a name or function, however, the programmer can
define a structure where certain positions within a fact are keywords and the other
positions are variable values.

Al Rules

The executable "code" in a KBS are rules. A rule can be viewed as a special
If/Then statement and can be partitioned into two parts. The if-part or logic section
of the rule is the part of the rule that looks for matches and relationships among the
data. The then-part or action part of the rule is activated only after the conditions in
the if-part have been satisfied.

34

Table 1: Language Implementation of Facts®

Language Argument Predicate Argument Argument
Format Name Value
LISP (list) positional first list element n/a rest of list
LISP (structure) keyword type name slot name slot value
Prolog positional function n/a argument
OPS5 keyword class name attribute valuet
CLIPS positional user-defined user defined valuet

T must be atomic

LISP does not have any constructs that directly implement an If/Then type of
statement. However, LISP does have the language constructs to build If/Then type
rules that could allow multiple patterns to be matched as well as multiple actions to be
performed. Prolog, OPS5, and CLIPS each provide for multiple pattern, pattern
matching capabilities which are summarized in Table 2. In Table 2, "Conjunction”

refers to the logical ANDing of facts. "Disjunction” is the logical ORing of facts. Table
3 is a table of commonly used knowledge base operations.
Table 2: If-part Pattern Matching“
Language Prolog OPS5 CLIPS
Feature
=, # (equal, not equal) any term number, symbol, number, symbol,
predicate function
<, >, .. .(less than, any term number number

greater than . . .)

Computed expressions | Yes (if-part only) No (then-part only) Yes (both parts)

Type test atom, number, number, symbol atom, number
variable

Negation, Conjunction | predicate, argument predicate, argument argument, function

Disjunction predicate, argument argument argument, function

Nesting of Conditions Yes No Yes

File 1I/0

A key part of the KB operations is the capability for interfacing with a
"permanent" data base. A permanent data base is usually stored on magnetic disk,
thus the capability to interface with a permanent data base relies on file I/0
capabilities. Of the four languages, LISP has the most extensive set of I/O capabilities;
OPSS5 has the smallest set.

CLIPS has two sets of I/O file commands: the first is for saving and retrieving
program files; the second is for saving and retrieving facts. The CLIPS facilities for
saving rules from the CLIPS environment will save only the rules; there is no top

*Expanded from [Cugini 87], Table 3, p. 20.
**Expanded from [Cugini 87], Table 4, p. 23.

35

level command (like SAVE) to save the facts in the fact list or any "deffacts” state-
ments (deffacts is a CLIPS construct that allows the user to develop a set of facts).
CLIPS will load both rules and facts if the program file is created with an external
text editor and the deffacts construct is used. During CLIPS program execution, CLIPS
does support reading facts from, and writing facts to, disk files.

Table 3: Operations Of Rules On Facts”

Operation |Number of Type of Source Language Rule-part containing
KB objects KB objects Statement _ the Statement
LISP:
add many fact, rule file load user-defined
add one fact, rule program make-x user-defined
modify one fact, rule program setf user-defined
delete one fact, rule program remove, user-defined
fact, rule remhash,... user-defined
Prolog:
add one fact program impliciﬂL then
add one fact, rule program assert if
delete one fact, rule program retract if
delete many fact, rule program abolish if
add many fact, rule file consult if
replace many fact, rule file reconsult if
OPS5
add one fact program make then
modify one fact program modify then
delete one fact program remove then
add one fact program build then
CLIPS:
add many fact file read <file> then
add many fact keyboard read then
add many fact program assert then
delete many fact program retrace then

T does not persist--derived and then discarded.

Table 4 is a summary of the I/O features of the four languages. "I/O language
objects" refers to the ability to read objects as elements; each read associates a
variable with an atom. “I/O characters” refers to the capability to read the external
file a character at a time. "I/O binary" refers to the capability of treating an input as
a set of bits where each bit may have a specific meaning. The user can modify the
CLIPS source code to provide both character and binary input capabilities. "Line
input" is the capability to input a line of data at a time regardless of the number of
elements associated with the data line. "Pseudo-1/0" is the capability to treat internal
memory as an I/O buffer and manipulate memory using I/O routines. "User control”
of the input and output refers to the facilities the user has to control the format of
the inputting and outputting of data. "Rename and delete files" refers to the
capability to access system file commands form the language environment. The

*Expanded from [Cugini 87], Table 5, p. 25.

36

newer versions of CLIPS do provide access to the DOS commands but access is system
dependent.

Table 4: Files and 1/O Features™

Features LISP Prolog OPS5 CLIPS
File types Sequential and Sequential Sequential Sequential
Random

I/O language objects Yes Yes Yes Yes

I/O characters Yes Yes User enhancable

I/O binary Yes User enhancable

Line input as characters as language as language
objects objects

Pseudo-1/0 Yes

User control of input Many Features Some Few

User control of output {Many Features Some Few Many Features

Rename and delete files | Yes Yes New Versions

Inference Engines

The inference engine is the part of the language that derives the response to a
set of facts. It is responsible for selecting which rules will be fired in which order.

The top level of the inference engine is how (or in what order) the facts are
processed. Two of the most common terms used to describe the control strategy of
rule firing are forward chaining and backward chaining. Forward chaining starts
with a set of facts and processes facts with rules until it has reached some conclusion
or until there are no more facts to process. Backward chaining starts with a conclu-
sion or assertion of a condition and then checks the facts to determine if the condi-
tion can be supported. Backward chaining is extremely useful in any system where
the program may be asked why it chose a specific course of action.

Another consideration for control strategy is the selection (or decision) of
which rule to fire next. Rule activation relies on "control knowledge." The relation-
ship between rules and control knowledge is that, "rules capture knowledge about
how to transform data; control knowledge is about when to transform data” ([Cugini
87] p. 15, my italics). The commonly used terms for the decision making process are:
Depth-first, Breadth-first, Recent-first, Best-first, and Heuristic [Cugini 87].

Prolog is a backward chaining system that processes facts in a depth-first
fashion. A depth-first system tries to process as far down one decision path as
possible until a block is encountered (in the form of an unsupported fact or improper
conclusion). When a block is reached, a depth-first system will back up to the last
successful node and proceed down the next alternate path. This process continues
from left to right across the "decision tree" until the solution is found or all decision
paths are exhausted.

Both OPS5 and CLIPS use forward chaining systems with recent-first fact pro-
cessing. The recent-first technique does not necessarily progress toward an answer.
In a recent-first system, the most recently asserted facts are given more weight so
that rules using these facts would be fired first (unless there is some other weighting

*Expanded form [Cugini 87], Table 8, p. 52.

37

system which might override the rule firing order). Both OPS5 and CLIPS will con-
tinue to process facts until each rule has processed each applicable fact.

It is important to note that just because a language was designed around a
specific type of inference engine, that language is not locked into that role. There
are many cases where Prolog has been used to implement a forward chaining system.
Likewise, OPS5 and CLIPS have been used to create backward chaining systems.

User Interface

Any good language will provide tools to aid in debugging of the source code. The
most often used tools are: trace features (which will indicate which line of code is
being executed), break points (where the number of lines to be executed is specified
or an event is specified which will stop execution), and printing out changes in the
values of variables. In some languages these tools must be written as part of the
source code.

Table 5 is a summary of the user interface features that might be used for
debugging a KBS. "Top-level control” refers to the process of invoking or running
the KBS. The section on "watch derivation" refers to watching the "thinking”
process of the KBS as it moves toward its end point. The "pause and step" features
refer to the KBS executing a set number of cycles or instructions. Either before the
KBS is executed or during a pause in the execution of a KBS a user may want to
"inspect the KBS" (it's facts, it's rules, and the agenda--also known as the conflict list-
for rules pending execution). "Manipulate KB" refers to the process of adding, or
deleting, facts and rules during a pause in the KBS execution. "Manipulate
derivation" refers to controlling the KBS during execution.

Embeddability

Of the four languages discussed, CLIPS is the only language that was designed to
be embedded within another system. When CLIPS is purchased, the C source code is
also supplied. The CLIPS User's Guide, Reference Manual, and Update notices supply
information for customizing CLIPS and embedding CLIPS within other systems. The
instructions are written around the Latice C compiler for the IBM PC however there
is some information related to using the Lightspeed C compiler on the Macintosh.

Miscellaneous Language Features

CLIPS provides language constructs to perform algorithmic types of tasks. These
constructs include If/Then/Else, and Do-While statements which can be executed in
the then-part of the rule. Another feature that is useful in CLIPS is the ability to
assign "weights" (call salience values) to rules. The rule with the highest salience
value is the rule that will fire next. Once all of the criteria are met to satisfy the if-
part of the rule the then part of the rule can then assert or retract facts required to
control the flow to the next rule to be fired. The process of controlling some of the
flow of rule firing, and the use of algorithmic constructs within a rule, greatly
enhances CLIPS capability to perform systems simulations as well as making it easier
for a conventional programmer to understand some of what is happening within the
CLIPS program.

In addition to the language constructs provided, the user may also customize
CLIPS for a particular task. The CLIPS User's Guide provides an example for adding a
random number generator to CLIPS. The process shown in the User's Guide will work
for any function associated with the then-part of the rule. The user could add

38

functions to convert an atom into a set of characters, or to read binary input from a
data file, or developing drivers for special equipment (ie. software drivers for
turning on and off solenoids). The capability of customizing CLIPS is an important
strength to the language.

Table 5: User Interface Features®

Language LISP Prolog OPS5 CLIPS
Feature
Top-level control:
invoke derivation Yes Yes Yes Yes
exit derivation Yes
exit svstem undefined Yes Yes Yes
Watch derivation:
complete Yes Yes Yes
selective Yes Yes Yes
Pause and step:
pause from program Yes Yes Yes
pause at named entity Fact or rule Rule
pause after n cycles Yes Yes
asynchronous interrupt Yes
step thru named entity Yes, Yes
via statement
step thru all Yes Yes Yes, via run _Yes, via (run 1)
Inspect KBS
named KB object Yes Yes Yes Yes, facts as a list
rules by name.
matching KB object Yes Fact only
rivation-state Goal stack Conflict _set Conflict set
Manipulate KB:
add KB object Yes Facts only Facts only
delete KB obiject Yes Yes Yes
Manipulate derivation:
abort Yes System dependent
backup program cycles Yes Yes
continue Yes Yes Yes Yes (from
program errors)
suspend derivation Yes Yes (on program
errors)

A _CLIPS APPLICATION

The CLIPS language is a good choice for writing a control system or simulation
of a control system. The rule based nature of the CLIPS language provides an
intuitive and quick medium for developing control rules.

As an example, a system designer required that a pressure of a vessel should
never exceed 95 psi, and that at 75 psi a warming message should be sent to the
operator. The types of rule that would be used to realize this control would be:

*Expanded from [Cugini 87], Table 6, p. 30.

39

(define rule: Warning-message
if (vessel-pressure => 75) => (then) (printout "Warning--vessel pressure has
reached " (vessel-pressure/95)*100 " percent capacity))

(define rule: Activate-pressure-relief-valve
if (vessel-pressure => 95) => (then) (open (pressure-valve-3)) and (printout
"Warning--vessel pressure critical. Relief valve has been activated"))

These rules are not in the CLIPS rule format because the language syntax would look
confusing without sufficient explanation. The rule structure is similar though.

Though this in not AI in the strict sense, the rules are capturing the "rules of
thumb" that the expert (the system designer) would use to control the system. The
real strength of using CLIPS for the control language is that each rule stands on its
own, any modification to the system would occur on a rule to rule basis with a
minimal to other rules (ie. changing the name of a variable in one rule will have no
effect on the function of another rule). For these reasons, Honeywell is reviewing
CLIPS as a candidate language for demonstrating embedded ES capability in
controllers for the Space Station.

CONCLUSIONS ABOUT CLIPS

Of the four languages, LISP is the most flexible but requires the most work to
produce an ES. If the KBS requires high levels of flexibility or different types of
inference operations during a single session then LISP would be the better choice of
languages. Prolog and OPS5 provide a faster route for developing an ES, while also
being easier to maintain, but at the expense of execution time and system memory.

Because of its embedability, its expandability, and its smaller size, CLIPS would be
the better selection for embedding low-level ES capability within a control system.
CLIPS is similar to OPS5 in its general operation. CLIPS is ment for use on personal
computers or smaller computer systems and is the only language that was developed
for embedded applications (putting ES capability into another system). Control
systems inherently require forward chaining data processing to move from sensor
inputs to a controlled output. The forward chaining rule base characteristics of
CLIPS make it a good language for developing control systems.

40

N8§8-16366

An Easy-to-use Diagnostic System Development Shell

L. C. Tsai, J. B. Ross”, C. Y. Han™", W. G. Wee
Department of Electrical And Computer Engineering
University of Cincinnati
Cincinnati, Ohio 45221

ABSTRACT

This paper describes an expert system development shell for
diagnostic systems, the Diagnostic System Development Shell
(DSDS). The major objective of building the DSDS is to create a
very easy-to-use and friendly environment for both types of users
-- knowledge engineers and end-users. The DSDS is written in OPSS5
and CommonLisp. It runs on a VAX/VMS system. A set of domain-
independent, generalized rules is built in the DSDS, so the users
need not be concerned about building the rules. The facts are ex-
plicitly represented in a unified format. These features make the
DSDS very easy to use. A powerful check facility which helps the
user to check the errors 1in the created knowledge bases is
provided. A judgment facility and other wuseful facilities are
also available. A diagnostic system (DS) developed based on the
DSDS system is question driven and can call or be called by other
knowledge-based systems written in OPS5 and CommonLisp. A
prototype DS for diagnosing a Philips constant potential X-ray
system has been built using the DSDS.

1. Introduction

Recently, expert systems have been applied to a variety of
fields such as medicine, finance, engineering, and science [4,5].
The number of expert systems developed has doubled annually since
the late seventies [2]. This rapid increment of the number of ap-
plications has 1led to the appearance of a wide range of commer-
cially available expert system tools or so-called expert system
development shells. Currently, these expert system tools are
responsible for about 85% of fielded systems [3]. Most of the
shells are powerful and fancy. But they are complex. Reference
manuals with hundred of pages are not uncommon. It takes a rela-
tively long time to learn them and to use them effectively. 1In
addition, wusers are supposed to have some background in AI tech-
niques and programming languages. In general, even with the shell
available, developing an expert system is not a trivial task. For
instance, in building of a medium size rule-based expert system
hundreds of rules have to be created. Many issues such as the
overall system structure and control schemes have to be con-
sidered by the user. Thus, it is desirable to create an environ-
ment that would take away the burden of learning a complicated
development shell and creating rules that are related to the
domain knowledge. In addition, this shell could be easily used by
the system designer and end-users alike. With this objective in

* with the Aircraft Engine Business Group of General Electric

Co., Evendale, Ohio.
with Department of Computer Science, University of Cincinnati.

41

mind, the Diagnostic System Development Shell (DSDS) has been
developed and is presented in the next sections.

Both the system architecture and its major components are
presented in Section 2. A prototype diagnostic system (DS)
developed by the DSDS is discussed in Section 3 and, finally, the
concluding remarks are in Section 4.

2. The Diagnostic System Development Shell

The Diagnostic System Development Shell (DSDS) is a software
utility that allows wusers, who know little about AI concepts,
techniques, and any high level computer languages, to develop
diagnostic systems and to use them.

Unlike the existing tools, there is a set of domain-
independent, generalized rules in the DSDS. All the user needs to
consider is the coding of domain knowledge (facts only) into
knowledge bases. The facts, which are explicitly represented in
1ists with a unified format, are organized in nodes of decision
tree structures. These features make both the DSDS easy to use
and the knowledge base easy to build, modify, and expand. To
monitor and to help users in building the DS a powerful check
facility in the DSDS can pick up most of the possible mistakes
the user might make. Since no AI techniques and programming
skills are required, the domain experts can concentrate on coding
the domain knowledge. A number of facilities, which include
judgment, explanation, and help with graphics, will make the end-
users feel the system is more friendly and convenient to run a DS
developed by the DSDS.

2.1 Architecture of DSDS

The DSDS consists of eight major components. They include
the generalized rule set (GRS), the fact knowledge base (FKB),
and facilities such as the checker, the helper, the explainer,
the judger, the DCL LISP interface and the graphic displayer.
among these components, the GRS, the FKB, and the checker are
more important and unique. They will be discussed in the rest of
this section.

The system architecture of the DSDS is shown in Figure 1.
The built-in generalized rule set is in charge of reasoning. In
the development mode of a DS, the user inputs domain knowledge
into the FKB through an editor and invokes the checker to check
the related LISP syntax and the node semantic rules.

puring the execution of the DS, the system interacts with
the user by generating questions to the wuser. The answers
provided by the wuser will be checked by the judger which will
identify and treat all the possible incorrect answers. The helper
offers help with graphics when the user asks for. The DCL LISP
interface makes it possible to use DCL under the OPSS5 and COMMON-
LISP environments. The graphic displayer are Fortran programs
that displays graphics when help is provided. The explainer
provides explanations of 'why' and 'how'.

42

USER

I‘ JUDGER

GENERALIZED RULE SET ———1

DCL FACT
VMS/DCL e I*—*= HELPER
LISP KNOWLEDGE

INTERFACE BASE
EXPLAINER t

GRAPHIC
CHECKER

DISPLAYER

Figure 1. The Architecture of the DSDS system.

2.2 The Generalized Rule Set

The GRS contains the rules that will control the reasoning
process while traversing down a decision tree during a diagnosis.
The generalized rule set is based on two assumptions. One is that
there is only a single source of error and the error is not
transient. This assumption, as can be seen in most of the
troubleshooting guides, is common 1in the field of diagnoses
(1,7). 1In fact, if there are more than one error source, the DS
may be run several times to isolate all of them.

The other assumption is that the decision trees, on which
the DS is based, are basically binary trees. The branches of
every node of the decision trees represent two opposite
propositions, yes and no, or positive and negative. This assump-
tion fits diagnostic procedures well. The "car won't start"
problem [6] is a typical example. Actually, the the binary tree
structure may become a type of graph in which a node still has
only two children, but different nodes could share a child, one
node's children could be its parents or ancestors.

To illustrate the GRS, assume a simple, generic, binary
decision tree of five nodes is given, in which the nodes N1 is
the parent node of the nodes N2 and N3, and the node N3 is the
parent node of the nodes N4 and N5. The nodes of the decision
tree contain domain dependent facts, which will be described in
the next section. Also, assume that in the node N1, a diagnostic
test is being made and either answer yes or no is obtained. If
yes, the node N2 will be pursued. In this case, N2 is a leaf that
means a set of conclusions can be generated, problem related sug-
gestions can be listed, and explanations be provided. If no, N3
is pursued and facts in node 3 will identify that this node is

43

not a leaf and a new series of actions such as generating inter-
mediate status or results, continuing further testing, or other
diagnostic actions are triggered. The process repeats for each
node traversed until a leaf node of the decision tree is
encountered.

2.3 The Fact Knowledge Base

Since the GRS is built in, the knowledge base includes facts
only. So the knowledge bases in the DSDS are regarded as the fact
knowledge bases. Facts, which are represented in lists, are or-
ganized in nodes of decision trees. Information related to a node
is included only in the corresponding list, which consists of
attribute-value pairs. All the lists are defined by a unified
LISP format. There are three types of attributes: the necessary,
the 1ink, and the optional attributes. Each node list has all the
necessary and link attributes and part of optional attributes.
There are some syntax rules, which specify that the value types
of certain attributes should be symbols or strings. There are
also some semantic rules, which stipulate relations Dbetween
attributes.

The FKBs are accessed by the generalized rules and trans-
ferred into OPS5 working memory. Unlike the generalized rules,
the FKBs can be developed, modified and expanded by the user.

2.4 The Checker

Since the FKBs are defined by LISP functions and the users
are supposed to know nothing about LISP. Some facilities should
be available to avoid making mistakes. Two kinds of facilities
could be helpful. The first is a special interactive interface
which asks wusers questions, interpreters the answers and codes
them into FKBs. But with this approach the users may easily get
bored, especially all the facts are represented in the same way,
the user will be asked the same questions repeatedly. The other
way is to provide a check facility. Users can code the facts into
FKBs directly through a text editor, then use the checker
facility to check the developed FKBSs. Since the facts are repre-
sented in a unified format, the second approach is more effective
in the DSDS.

The checker is able to pick out related LISP syntax errors.
It withdraws the decision trees from the built FKBs and displays
them on the CRT. In addition, the checker can check the semantic
rules. Once the checker picked out some error, it would print out
error message, analyze the error and give the possible causes of
the error. If a fatal error happens, the checker will stop
working. Otherwise, it will continue to check until all the FKBs
are checked.

3. An X-ray System Diagnostic System

A prototype -- an X-ray system DS was built by using the
DSDS on VAX/VMS system. It is a DS for diagnosing a PHILIPS Con-
stant Potential X-ray system. The X-ray system consists of two
major units, the high voltage power supply and the computerized

44

controller. The controller contains nine printed circuit boards.
The domain expertise came from the troubleshooting part of the X-
ray system service manual and a domain expert. Based on this ex-
pertise twenty three decision trees corresponding to the same
number of symptoms were built. The FKB includes 19 files with
more than 5000 lines of code. The Checker was used to pick out
all the syntax and semantic errors. To reduce the search space,
this DS isolates the faults at four levels. The diagnostic proce-
dure first finds out the fault is in the controller wunit or in
the high voltage power supply unit. Secondly, it isolates the
faults in a certain board, then in a certain circuit and finally
in a replaceable component.

4. Conclusion

An easy-to-use and friendly environment for designing diag-
nostic systems has been presented. The major features of the sys-
tem are that the knowledge representation and input are
facilitated by a unified list format and the reasoning of the ex-
pert system is done by the built-in generalized rule set. No pre-
vious knowledge of AI techniques and programming languages is
required. The user needs only to concentrate on coding the domain
knowledge into the so-called FKBs.

Overall the system is very straightforward to use. The
prototype, explained in Section 3, has shown that the main objec-
tive of the DSDS system has been achieved. As a minor flaw of the
implementation, the display of graphics is rather slow, since the
process of generating graphics in VAX/VMS is complex. The OPSS5
program has to call the display program written in Fortran via
Lisp, DCL, and the display program has to get the data from disk.

5. References

[1] Davis, R. et al., "Diagnosis Based on Description of
Structure and Function," Proc. of AAAI-82, 1982, pp.137-142.

[2] Gilmore, J. F. and Pulaski, K., "A Survey of Expert System
Tools," Proc. of 2nd Conf. on AI Applications, 1985,
pPp.498-502

[3] Hamon, P. (ed.), "Inventory and Analysis of Existing Expert
Systems," Expert System Strategies, Vol.2, No.8, Aug.,1986,
pp.1-17.

[4] Hayes-Roth, F., Waterman, D. A., and Lenat, D. B. (eds.),
Building Expert Systems, Addison-Wesley, Reading, MA, 1983.

[5] Waterman, D. A., A Guide to Expert Systems, Addison-Wesley,
Reading, MA, 1985.

[6] Weiss, S. M. and Kulikowski, C. A., A Practical Guide of
Designing Expert Systems, Rowman & Littlefield Pubs, 1984.

[7] A Constant Potential X-Ray System Model 161/321 Service
Manual, Philips.

45

N88-16367

An Inference Engine for Embedded Diagnostic Systemst

Barry R. Fox Larry T. Brewster

Artificial Intelligence Group Department of Computer Science
McDonnell Douglas Research Laboratories University of Missouri-Rolla

PO Box 516, St. Louis, MO 63166 Rolla, MO 65401

Abstract. This paper describes the implementation of an inference engine for embedded
diagnostic systems. This system consists of two distinct parts. The first is an off-line
compiler which accepts a propositional logical statement of the relationship between facts
and conclusions and produces the data structures required by the on-line inference engine.
The second part consists of the inference engine and interface routines which accept asser-
tions of fact and return the conclusions which necessarily follow. Three design goals of this
inference engine are emphasized. First, it is logically sound. Given a set of assertions it
will generate ezactly the conclusions which logically follow. At the same time, it will detect
any inconsistencies which may propagate from an inconsistent set of assertions or a poorly
formulated set of rules. Second, the memory requirements are fized and the worst-case
ezecution times are bounded at compile time. Third, the data structures and inference al-
gorithms are very simple and well understood. This system has been implemented in Lausp,
Pascal, and Modula-2. The data structures and algorithms are described in detail.

Introduction

Advanced aircraft and spacecraft are becoming increasingly reliant on onboard elec-
tronic systems. At the same time, onboard electronic systems are becoming increasingly
complex, interrelated, and interdependent. Because of this reliance, it is necessary to con-
stantly validate the behavior of onboard electronic systems, and when errors are detected,
to quickly identify and isolate the faulty subsystems. Advances in artificial intelligence
technology make it possible to construct embedded diagnostic systems which can monitor,
validate, diagnose, and when necessary, deactivate critical onboard systems.

Embedded diagnostic systems impose implementation constraints which eliminate the
use of most of the commercially available artificial intelligence tools. The implementation
language and target processor are often dictated by contract. The memory requirements
must be bounded and modest and the inference cycle must be bounded and predictable.
The reliance on such systems for mission safety and success dictates that the behavior of
the inference engine be demonstrably correct.

Many validation and diagnostic problems can be represented and solved entirely within
the framework of zero-order (propositional) logic. For example, those problems which have
traditionally been solved using decisions tables, debugging flowcharts, or decision trees
involve a finite number of facts having true or false values which in turn are logically
related to a finite number of intermediate and final conclusions. Generic facilities for the
construction of embedded diagnostic systems are provided in the Zero-Order Environment
for Test and Analysis (Zeta) described below.

t Research supported in part by the McDonnell Douglas Independent Research and
Development Program.

4 C7Lr2DiNG PAGE BLANK NOT FILMED

Design Goals

The architecture and implementation of Zeta were guided by several design goals.
Emphasis was placed on achieving generality and simplicity without sacrificing correctness
nor capability.

The first goal was to make the system independent of any specific programming lan-
guage or computer architecture. This would allow the system to be implemented with
familiar programming languages on conventional architectures. At the same time, specific
onboard computer architectures would not be eliminated, nor would special Lisp or Prolog
architectures be excluded. This goal further requires that the data structures and algo-
rithms be documented in sufficient detail that a new implementation in a new environment
can be produced quickly.

The second goal was that the inference engine be generic. Tt should be possible
to adapt a working inference engine to new diagnostic problems simply by creating and
compiling the knowledge base for those new problems. A working implementation of the
inference engine should be available as re-usable, off-the-shelf software.

The third goal was to make the inference engine demonstrably correct. Given a knowl-
edge base which defines the logical relationship between observations and conclusions and
given a set of assertions the inference engine should generate exactly the conclusions which
logically follow. At the same time it should detect any inconsistencies which may propa-
gate from an inconsistent set of assertions or a poorly formulated set of rules. Moreover,
it should be possible to establish these properties from an analysis of the data structures
and algorithms.

The fourth goal was to make the inference engine operate successfully and correctly
with partial information. It should be possible to assert facts one at a time. With each
assertion, the inference engine should be able to derive exactly those conclusions which
follow from the aggregate of the present and preceding assertions.

The final goal was that, given a fixed knowledge base, the inference engine should have
time and memory requirements which are both bounded and modest. This goal strongly
influenced the choice of data structures and algorithms; it required the introduction of
certain optimizations; and it also placed some limitations on the acceptable forms for a
knowledge base.

External Knowledge Representation

The input to this system is a formula composed of the logical operators and, or,
xor, not, and implies, parentheses for constructing sub-expressions, and symbols, which
denote propositional parameters of the system under consideration. There is no explicit
distinction between observations and conclusions. The input formula simply identifies the
relevant boolean parameters of the system and the logical relationships between them.

The input formula can be a conjunction of rules of the form (antecedent implies
consequent) but the input can be considerably more general than that allowed by most
familiar rule-based systems. Most rule-based systems require statements in the form of an
implication with additional restrictions that disjunctions (or more complicated expressions)

48

are not allowed in the consequent. For example, the phrase (alpha xor beta xor gamma)
is very hard to formulate in a traditional rule-based system without enumerating one rule
for each relevant combination of alpha, beta, and gamma. The input to this system can be
an arbitrary boolean formula (with some limitations imposed only to eliminate syntactic
ambiguity).

The only significant restriction on the input is semantic. It is assumed that the
inference engine will only be used for mapping observations into conclusions and will not
be used to derive new rules or prove theorems about the interrelationships between rules.
For example, given the rule (((alpha implies beta) and gamma) implies delta) and
a separate rule (alpha implies beta) it is certainly true that (gamma implies delta).
However, the detection and resolution of all such inter-rule relationships would be too time
consuming to perform on-line. To guarantee bounded time and space requirements for the
inference cycle, it is assumed that all such combinations of rules have been identified and
resolved beforehand.

Internal Knowledge Representation

While the input to this system may be an arbitrary propositional formula, a much
more regular structure is required for an efficient on-line inference cycle. For that reason,
ZETA is composed of two parts. An off-line compiler which normalizes the given propo-
sitional formula and an on-line inference engine which performs the deductive processes.
This normalization proceeds in four stages. First, expressions involving xor and implies
are mapped into expressions involving only the operators and, or, and not. Second,
all negated sub-expressions are recursively rewritten using deMorgan’s law, resulting in a
formula composed only of and, or, and positive or negative propositional variables. (Here-
after, positive or negative propositional variables will be referred to as literals. Third, the
given formula is converted to conjunctive normal form through applications of the boolean
distributive law, resulting in a conjunction of disjunctive clauses which in turn are com-
posed only of literals. Finally, each disjunctive clause is mapped into a sequent of the
form (conjunction implies disjunction). The natural interpretation of a sequent is that
the truth of each literal in the antecedent implies the truth of at least one literal in the
consequent. By convention, an empty antecedent is implicitly true, while an empty conse-
quent denotes a contradiction. The sequent constructed from a disjunctive clause consists
of an empty antecedent and a consequent identically equal to the given clause. Deductive
processes which may be applied to sequents are discussed in the next section.

Inference Algorithm

Activities of the on-line inference engine are driven by a series of assertions and retrac-
tions of fact. It is useful to allow both assertion and retraction for very practical reasons.
During development of a knowledge base, the knowledge engineer may wish to establish
a particular state of the inference engine and then explore situations which can emanate
from that state. It would be laborious to repeatedly reset the inference engine and then
carry it to each situation through a series of assertions. Instead, it is better to be able
to assert a fact, to determine its effect, and then to retract that fact in order to explore
the immediate effect of other faults or conditions. On-line, this ability can be used to
ensure the integrity of the diagnostic process in time critical situations. For instance, some
physical conditions are intermittent. In a time-critical situation it would be risky to reset

49

the inference engine and repeat the entire history of observations and assertions simply
because an intermittent physical condition no longer holds. In other situations it may be
discovered that a sensor itself is faulty. Again, time may not permit a complete reset of
the inference engine just to remove the conclusions derived from that erroneous sensor.

The inference cycle begins by placing an assertion on an agenda of activities to be
performed. On each inference cycle one item is removed from the agenda and processed,
but additional items may be placed on the agenda as a result.

The first step in processing an assertion is to determine whether it is consistent with
the present state of the inference engine. Three conditions may hold. An assertion is
an assignment of a boolean value to one of the propositional variables. If the variable 1s
presently undefined, then any assertion for that proposition is considered to be consistent.
If the variable presently has a value, and the value to be bound to that proposition is the
same, then the assertion is considered to be redundant. However, if the variable presently
has a value but it differs from the value to be bound to that proposition, then the assertion
is considered to be inconsistent.

The second step in processing an assertion is to derive any conclusions which necessar-
ily follow. This step is unnecessary for redundant assertions and must not be performed
for inconsistent assertions. Given the semantic restrictions on the knowledge base dis-
cussed above, the derivation of necessary conclusions is both correct and efficient. This is
accomplished by two techniques. First, the inference engine makes use of an index, con-
structed when the knowledge base was compiled, and inspects only those sequents which
can potentially produce a conclusion from the given assertion. The index does increase the
memory required to store the knowledge base by approximately a factor of two. However,
the additional memory requirement can be more than offset by the following guarantee.
The time required to process an assertion is independent of the size of the knowledge base;
instead, it is related to the number of sequents which contain a given literal, and upon the
number of conclusions which depend upon it. Second, instead of evaluating or analyzing a
sequent, the inference engine applies a very simple rewriting rule based upon the natural
interpretation of a sequent. Given an assertion that a literal L should be true, and given a
sequent which contains not-L in its consequent, then some other literal in the consequent
must be true. Hence, remove not-L from the consequent and include L in the antecedent.
If only one literal remains in the consequent after this rewriting, then that literal must be
true and an appropriate assertion 1s placed on the agenda.

A significant advantage of this sequent representation and method of inference is that
assertions are reversible by retraction. The inference cycle begins by placing a retraction
on the agenda. On each inference cycle one item is removed from the agenda and processed.

As before, other retractions may be placed on the agenda as a result.

Like an assertion, a retraction is consistent if the value to be removed is equal to
the value which a variable presently holds; it 1s inconsistent if the value to be removed
is the opposite of the value which the variable presently holds; and it is redundant if the
variable is presently undefined. There is an additional case. The value to be removed may
match the value which the variable presently holds, but that value may be required or
supported by the consequent of some sequent. Therefore that retraction would introduce
an inconsistency if performed and is considered to be impossible. As with an assertion,

50

a retraction is performed only if it is consistent with the present state of the inference
engine.

The process of rewriting sequents under retraction is the reverse of the assertion
process described above. Given a retraction of some literal L, and given a sequent which
contains L in its antecedent, first inspect the consequent of that rule. If only one literal
remains in the consequent before this rewriting, then this retraction may necessitate the
retraction of the consequent as well. If no other sequent supports this consequent, then
place the appropriate retraction on the agenda and perform the rewriting: remove L from
the antecedent and include not-L in the consequent. If the consequent has other support
before the rewriting, or if the consequent contains more than one literal, then perform only
the rewriting step.

Architecture

The architecture of this system can be sketched at two levels. At the highest level
the system consists of two separate programs. The first accepts a propositional formula
which defines the logical relationship between the boolean parameters of the system to
be monitored. The output of the first program is the program fragments necessary to
declare and initialize the data structures for the second program. The second program
is produced by combining these program fragments with the off-the-shelf code for the
inference engine. This two-stage process removes any parsing and normalization costs
from the on-line system and it produces a diagnostic program of minimal size.

The lower level structure of the first program is not significant. The program can be
viewed as a black box which performs the compilation function. The structure of the second
program is significant. It provides the interface to the inference engine. This interface
includes an initializing procedure which resets all propositional values to undefined and
rewrites every sequent to the form (() implies disjunction). There is a procedure for
making an assertion which requires two parameters, a propositional identifier and a value
to be bound to that variable, and which initiates the inference cycle described above.
There is a procedure for making a retraction which requires only a propositional identifier,
assuming that the user wishes to retract the present value of the given proposition. All
deductive results produced during an inference cycle are placed on a stack; these results
can be retrieved one at a time by simple procedure calls. Other procedures exist which
will return the present value of a proposition, its symbolic name, etc.

Conclusion

The Zero-Order Environment for Test and Analysis system has characteristics which
make it suitable for embedded diagnostic systems. Notably, the representation and meth-
ods of inference are independent of any specific programming language or computer ar-
chitecture; the time and memory requirements are modest and the upper bounds may be
determined prior to run time; the inference engine is generic and can be adapted to new
applications by introducing a new knowledge base; the inference engine 1s demonstrably
correct generating exactly the conclusions which follow from a given set of assertions while
detecting any inconsistency; the inference engine complements the facility for incremental
assertion with a facility for incremental retraction.

N88-16368

CLIPS: An Expert System Tool for Delivery and Training

Gary Riley, Chris Culbert, Robert T. Savely, and Frank Lopez
NASA/Johnson Space Center
Artificial Intelligence Section - FM7
Houston, TX 77058

Abstract

The 'C' Language Integrated Production System (CLIPS) is a forward chaining
rule-based language developed by the Attificial Intelligence Section at NASA/Johnson
Space Center. This paper examines the requirements necessary in an expert system
tool which is to be used for development, delivery, and training. Because of its high
portability, low cost, and ease of integration with external systems, CLIPS has great
potential as an expert system tool for delivery and training. In addition, its representa-
tion flexibility, debugging aids, and performance, along with its other strengths make it a
viable alternative for expert system development.

Introduction

Expert system technology is a major subset of Artificial Intelligence and has been
aggressively pursued by researchers since the early 1970's. In the last few years, both
government and commercial application developers have given expert systems con-
siderable attention as well. An entire industry has grown to support the development of
expert system tools and applications, with a wide variety of both hardware and software
products now available. The availability of expert system tools has greatly reduced the
effort and cost involved in developing an expert system.

Despite all this, expert systems have generally failed to make a major impact in
application environments. This failure has stemmed from tool vendor's overemphasis
on expert system development environments to the detriment of options for delivery of
expert systems and training in expert system technology. Viable delivery options are
necessary to field expert systems. Training options in expert system technology are
necessary for the widest possible dissemination of this technology.

The 'C' Language Integrated Production System (CLIPS) is a forward chaining
rule-based production system developed by the Artificial Intelligence Section at
NASA/Johnson Space Center. Version 1.0 of CLIPS, developed in the spring of 1985
in a little over two months, accomplished two major goals. The first of these goals was
to gain useful insight and knowledge about the construction of expert system tools and
to lay the groundwork for future versions. The second of these goals was to address the
delivery problems of integrating and embedding expert systems into conventional envi-
ronments. Version 1.0 successfully demonstrated the feasibility of continuing the pro-
ject.

Subsequent development of CLIPS greatly improved its portability, performance,
and functionality. A reference manual[2] and training guide[5] were written. The first re-
lease of CLIPS, version 3.0, was in July of 1986. The latest version of CLIPS, version

“RECEDING PAGE BLANK NOT FILN:D 3

4.1, was completed in September of 1987. CLIPS is currently available through
COSMIC (see appendix).

The development of CLIPS, though not a significant advance in expert system
representation capability, is a significant advance in the concept of providing a low cost
tool that can be used for training, development, and delivery. The use of CLIPS in these
areas will be examined in this paper with special emphasis on CLIPS's capabilities as
a delivery and training tool.

Delivery

CLIPS addresses several issues key to the use of an expert system tool for de-
livery. Among these issues are: the ability to run on conventional hardware; the ability
to run on a wide variety of hardware platforms; the ability to be integrated with and em-
bedded within conventional software; low-cost delivery options; the ability to separate
the development environment from the delivery environment (i.e. run-time modules);
the ability to run efficiently (both speed and memory), and migration paths from devel-
opment to delivery environments.

One major requirement for a delivery tool is the ability to run on conventional
hardware. Current state-of-the-art expert system software tools are almost all based in
LISP and run only on specialized LISP hardware, such as the Symbolics or Tl Explorer,
or on the new generation of workstations such as the SUN or Apollo. While these work-
stations do provide a conventional platform for delivery, investment in conventional
hardware often precludes adding additional or specialized hardware to support expert
systems. The question to ask when considering delivery is not "Is there a conventional
machine that supports the expert system tool | want to use?", but rather "Does the con-
ventional machine | have support the expert system tool | want to use?"

Portability of the expert system tool code insures the ability to deliver on a wide
range of hardware from microcomputers to minicomputers to mainframes. Because
CLIPS is written in C and special care was taken to preserve portability, CLIPS is able
to provide expert system technology on a wide variety of conventional computers.
CLIPS has been hosted on over a dozen brands of computer systems ranging from mi-
crocomputers to mainframes without code changes. To maintain portability, CLIPS uti-
lizes the concept of a portable kernel. The kernel represents a section of code which
utilizes no machine dependent features. To provide machine dependent features, such
as windowed interfaces or graphics editors, CLIPS provides fully documented software
hooks which allow machine dependent features to be integrated with the kernel.

The ability to integrate with and embed within existing code is an important feature
for a delivery tool. Integration guarantees that an expert system does not have to be
relegated to performing tasks better left to conventional procedural languages. It also
allows existing conventional code to be utilized. The capability to be embedded allows
an expert system to be called as a subroutine (representing perhaps only one small
part of a much larger program). Many tools view themselves as the "master" program
and only permit control to be passed to other programs through them. CLIPS allows
integration with C programs as well as integration with other languages such as
FORTRAN and ADA. In addition, many functions are provided which allow CLIPS to be

54

manipulated externally. Because the source code is available, CLIPS can be modified
or tailored to meet a specific user's needs.

Applications should be delivered as economically as possible. Many tools require
the entire development environment to run an application. This necessitates buying a
new copy of the tool for every delivered application. Some tools provide the capability
to generate run-time modules. These run-time modules are basically equivalent to the
executable modules generated by compilers for procedural languages. Run-time mod-
ules allow the unneeded functionality and information associated with the development
environment to be stripped away from the delivery environment. This is a desirable
characteristic, but for many tools, each copy of a run-time module must be purchased.

CLIPS effectively addresses the problems of low cost delivery. The cost for CLIPS
source code is $200. This initial cost provides unlimited copies of CLIPS for delivery,
development, and training. In addition, CLIPS also provides the capability to generate
run-time modules.

Another key feature for a delivery tool is efficiency. CLIPS is based on the Rete al-
gorithm([3] which is an extremely efficient algorithm for pattern matching. CLIPS version
4.1 compares quite favorably to other commercially available expert system tools based
on the Rete algorithm. CLIPS performs its own memory management, eliminating the
problems associated with garbage collection that plague most LISP based expert sys-
tem tools.

A good delivery tool should also provide a graceful migration from the develop-
ment environment to the delivery environment. CLIPS was designed to be as compati-
ble as possible with other forward chaining rule-based languages. Thus the capabilities
of CLIPS closely mimic the forward chaining capabilities of tools such as ART[1] and
OPS5[4]. Such similarity allows the migration of programs developed using the power-
ful environments provided by LISP machines and tools such as ART to conventional
hardware. This approach allows problems to be prototyped using the most productive
environment available and then delivered in the desired environment.

Training

CLIPS addresses several issues key to the use of an expert system tool for train-
ing. A good training tool should have knowledge paradigms of the appropriate com-
plexity, be low cost, run on easily accessible hardware, and have easy to use interfaces
and debugging tools.

A good training tool should meet the Goldilocks criteria. That is, its knowledge
paradigms should be neither too complex nor too simple. Hybrid tools incorporating
multiple paradigms such as ART can be extremely difficult to learn to use. In addition,
training using hybrid tools can often require additional training on the use of the LISP
language and environment. On the other hand, simple tools such as decision tree
builders, often lack the necessary depth to teach a reasonable variety of expert system
concepts. CLIPS's single paradigm, forward chaining rules, provides a reasonable
compromise between complexity and simplicity. It also provides a training path to the
more complex hybrid tools.

55

A low cost tool is necessary for the widespread use of expert systems technology.
Groups interested in expert system technology may not be able to spend large sums of
money to use tools which utilize some of the more powerful knowledge representation
paradigms. Inexpensive tools that provide only limited paradigms may give a false im-
pression of the types of problems that can be solved with expert system technology.
CLIPS provides a reasonably powerful representation paradigm at an extremely low
cost.

A tool for training should run on easily accessible computers. In other words,
whatever computers are available. This means that the tool should be as portable as
possible and run on microcomputers (which make very good target machines for train-
ing tools). Portability for the training tool is also essential because the development and
delivery environments may differ from the training environment. It is not productive to

train with a tool that cannot then be used to develop and deliver an expert system.

A training tool should be easy to use. Mouse/menu driven windowed interfaces
with graphical knowledge browsers and integrated editors are highly desirable. Be-
cause of portability concerns, the standard version of CLIPS uses a command line in-
terface. However, software hooks are available to allow more sophisticated interfaces
to be built. Several such training and development interfaces have been developed.
Version 4.1 of CLIPS has an integrated editor (designed to run on UNIX, VMS, and
MS-DOS machines) which allows quick editing and recompilation of rules. CLIPS has
a wide variety of debugging commands to assist in examining and debugging an expert
system.

Development

Several features are key to the use of an expert system tool for development.
Among these features are: multiple knowledge representation paradigms; sophisticated
user interfaces, debugging aids, and browsers; integrated editors, compilers, and other
system tools; and the ability to rapidly prototype and iteratively refine an expert system.

Access to multiple representation paradigms is quite useful during the develop-
ment stage of an expert system since the representation paradigms needed to solve a
problem are not always known in advance and can frequently change as the problem
solution evolves. CLIPS utilizes only one major paradigm: forward chaining rules. The
use of a single paradigm in a tool is a drawback for development, however, expert sys-
tems such as DEC's XCONI6] built using OPS5 demonstrate that single paradigm tools
can be used to develop significant expert systems.

Most of the interface features described for training are also desirable for devel-
opment. Sophisticated interfaces provide ease of use in creating, debugging, and ex-
amining an expert system. An integrated environment provides quick turn-around time
during development which facilitates rapid prototyping and iterative refinement.

Clearly the development environment is the area in which CLIPS compares least
favorably to other expert system tools. However, while CLIPS does not provide a de-
velopment environment as powerful as the major state-of-the-art expert system tools, it
does provide the basic features necessary for the development of expert systems.

56

Conclusion

CLIPS has several characteristics which make it highly advantageous to use as a
tool for delivery and training. Among these are its portability, low-cost, and ease of inte-
gration with conventional environments. In addition, it provides an environment suitable
for the development of expert systems.

References
[1] ART Reference Manual, Inference Corporation, Los Angeles, CA. 1986.

[2] Culbert, C. "CLIPS Reference Manual". NASA Technical Memo FM7(87-220),
December, 1986.

[3] Forgy, C. "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match
Problem". Pages 17-37, Artificial Intelligence 19, (1982).

'[4] Forgy, C. OPS5 User's Manual. Department of Computer Science document
CMU-CS-81-135, Carnegie-Mellon University, Pittsburgh, PA. 1981.

(5] Giarratano, J. The CLIPS User's Guide. NASA Internal Note 86-FM-25, October,
1986.

(6] Harmon, P., and King, D. Expert Systems: Artificial Intelligence in Business. John
Wiley & Sons Inc. New York, NY, 1985.

Appendix

NASA, DoD, and other government agencies may obtain CLIPS by contacting the
CLIPS help desk 9:00 AM to 4:00 PM CST weekdays at (713) 280-2233. CLIPS is
available outside the government through the COmputer Software Management and
Information Center (COSMIC), the distribution point for NASA software. The program
number is MSC-21208. Program price is $200.00 and documentation price is $17.00
(as of January 14, 1987). The program price is for the source code. Further information
can be obtained from COSMIC:

COSMIC

Software Information Services
The University of Georgia
Computer Services Annex
Athens, Georgia 30602

(404) 542-3265

57

N88-16369

Issues Associated with Telerobotic Systems in Space

Scott A. Hofacker
Bernard J. Schroer
Johnson Research Center
The University of Alabama in Huntsville
Huntsville, Alabama 35899

ABSTRACT

This paper presents the research issues in using telerobotics in space.
Included in this paper is a review of previous research in space telerobo-
tics and the results of several telerobotics experiments.

INTRODUCTION

A number of studies have been conducted beginning in the 1970's con-
cerning the issues associated with telerobotic systems. Some of the
research issues in telerobotic systems for space application are: video
viewing, scene lighting, feedback delays, and predictive displays.

Video Viewing

Three camera locations are commonly considered in most research stu-
dies. The first camera is mounted on the manipulator and gives a close up
view directly over the robotic gripper. A second camera provides an
overall view or scene of the task area. This camera provides depth percep-
tion to the operator. A third camera may also be necessary to provide an
overhead view of the task area.

Several previous camera studies [Pennington 1983] have concluded that
operators prefer two views. One view is positioning the camera for a side
view, or orthogonal to the task board, and above the center of the board
with a 60 degree field of view. The second view is positioning the camera
above the task area and viewing down at a 70 degree angle.

A related issue in video viewing is the use of black and white versus
color cameras. Most researchers have used a black and white camera on the
manipulator and a color scene camera [Collins 1986]. The research has
concluded that black and white cameras are adequate [Yorchak 1986].

Several studies have also been conducted concerning the use of stereo
cameras. A dexterity test consisting of the peg-in-hole task with various
size pegs concluded that the smaller pegs required more time than the
larger pegs [Brye 1977]1. Also, the response time was considerably less for
a stereo camera system as compared to an orthogonal monoptic system.

In summary, an evaluation of a number of recent video viewing studies
[Yorchak 19861 concluded that two cameras are better than one, two cameras
positioned orthogonally are better than two cameras positioned to produce
stereo, and a third camera for an overhead view does not seem necessary.

t 59
crEpEmiNG PAGE BLANK NOT FILMZD

Scene Lighting

Since all space telerobotic tasks are performed in space, scene
lighting is a critical factor. For example, a task can go from total
darkness to total brightness by a mere change in orientation. Likewise, it
is possible to obtain a variety of shadow conditions based on the location
and position of the robot and the task in space. Scene lighting is rela-
tively easy to simulate in a laboratory. For example, in the laboratory
flat black drapes can completely surround the facility. Also, black cloths
can be placed on the floor and around the task boards to eliminate any
reflections. The overhead Tlights are then extinguished. The source
lighting can then be directed at various intensities and focused on the
task. In addition, a variety of shadows can be displayed on the task by
positioning the light sources accordingly.

Feedback Delays

Time delays are inherent in any teleoperation system. Sending and
receiving transmissions from space or space vehicles can result in time
delays between 0.5 and 8.0 seconds. The length of delay depends on the
number of switching satellites and the data processing times. A number of
studies have been made of the effect of time delays on operator performan-
ces. In general, these studies have concluded that the task time increases
with an increase in time delays [Ferrell 1965].

A related issue to time delays is the effect of limited camera band-
widths on operator performance. Bandwidths are generally limited because of
the vast amount of data transmission necessary between the manipulator and
the control station. Several studies [Ranadive 1979 and Deghuee 1980] have
concluded that the operator can perform familiar simple tasks with con-
siderably reduced bandwidths; however, these studies were done without any
time delays.

Predictive Displays

Time delays cannot be completely eliminated in any teleoperation
system. However, with predictive displays the operator is able to see, via
a computer graphics representation of the robotic area, exactly where the
robot will be after the commands are executed. As the operator moves the
arm, the model will, in real time, update the graphics display to show the
operator the effects of the command before the arm has actually received
the command. This type of predictive feedback is useful to the operator by
improving the low productivity of move and wait tactics. For example, a
recent study [Sheridan 19841 found that predictive displays reduce task
time between 50-150 percent. Also, in another study [Arnold 1963] predic-
tive displays enabled the operator of a remote vehicle to drive at the same
speed nearly as well with or without a time delay.

ROBOTICS LABORATORY

Figure 1 presents a system schematic of the space telerobotics
laboratory at the University. The laboratory is configured around a Puma
562 6 DOF arm. Mounted on the arm is a high resolution black and white CCD
camera (see Figure 2). The Puma is remotely controlled with two 3 DOF hand
controllers at the control console.

60

Several scene cameras are located around the task board. One of the
cameras is a color camera with auto white balance and a zoom lens that is
mounted on a pan and tilt unit. Both the zoom lens and the pan and tilt
unit are remotely controlled at the control console. The second scene
camera is a black and white camera. A1l video output is fed back to moni-
tors at the remote control console.

The inter-meshing gripper is a modification of a NASA design [NASA
1980]. The gripper is electrically operated and has two limit switches to
indicate when the gripper is fully open or closed. The gripper is remotely
controlled at the control console.

Raw video
Pan and
tilt unit
Raw video B/W
camera q
l Tesk
board
Puma Gripper
562 |
robot K
I ™
]
Robot mer
controtler
B/wW Raw video
monitor |
Color B/W
monitor monttor
/’ /° Controller
3 DOF 3 DOF
Controllers [
Control console

Figure 1. System schematic of robotics laboratory

TELEROBOTIC EXPERIMENTS

A simple peg-in-the-hole task was defined to evaluate the labora-
tory's hardware and software, especially the Puma control software. In
addition, by selecting the peg-in-the-hole task, it was possible to compare
and validate the results with previously published research. Figure 2 also
includes a photograph of the peg-in-the-hole task board. Each board con-
sists of three 1 1/8 inch holes. The peg diameter is one inch. Initially,

61

i Figure 2. Robotics Laboratory Hardware

-

the peg is in the top hole on the right board. The task objective is to
transfer the peg to the bottom hole on the left board. The response
variable is the time to perform the task. This response variable is common
to most telerobotic experiments. The scene lighting equipment did not
arrive in time for the experiments. Therefore, all experiments were con-
ducted with the normal laboratory lights turned on.

The following factors and levels within factors were considered in this
experiment:

° Factor 1 - Time delay.
Three Tlevels of time delays were used (0, 1, and 2
seconds). These delays were changed through the robot
control program.

Factor 2 - Camera view.
Three levels of camera views were used with each level
consisting of two cameras: a side scene view and and
an arm view where the camera was mounted on the Puma
arm; an angle scene view with pan/tilt/zoom and an arm
view; and an angle scene view with no pan/tilt/zoom and
an arm view.

Factor 3 - View color.
Two levels were used: black and white and color. Only
the side view camera with the pan/tilt/zoom was color.

ORIGINAL PAGE IS 62

OF POOR QUALITY; Rl
“kkiygph

Each level of each factor is combined with all levels of every other
factor in the experimental design. Therefore, the experimental design con-
sists of a 3x3x2 completely randomized factorial experiment. This design
results in 18 cell. Each cell is also replicated four times, two each by
two student subjects, for a total of 72 runs.

The ANOVA results show a significant effect of time delay on task time
(F = 33.18, p<0.05). A number of other research studies have been made on
the effect of time delays on operator performance. In general, these stu-
dies have concluded that the task time increases with an increase in time
delays [Ferrell 1965 and Yorchak 1986].

The ANOVA results did not show a significant effect of camera view on
task time (F = 1.80). While the camera view did not show a significance,
the subjects stated preference for the side, or orthogonal, view as opposed
to the angle view. This preference agrees with findings by Kirkpatrick
[Kirkpatrick 19731 that orthogonal views are more effective.

The ANOVA results did not show a significant effect of view color on
task time (F = 2.31). This result agrees with other researchers who have
concluded that black and white cameras are adequate [Yorchak 1986]. The
ANOVA results also did not show any second or third order interaction
effects. These four interactions were delay and view; delay and color;
view and color; and delay, view and color.

Figure 3 is a plot of the total task time for the 0, 1, and 2 second
time delays. The task times were averaged for each time delay and repre-

sent 24 values. As can be seen, the total task time increased from 2.99
seconds with 0 second delay to 4.64 seconds with a two second delay.

=T~ maximum

51— ——

T) mean
4 —
-t MiNiMumM
I+ [«

Task time (minutes)

(8]
I

| !]
0 1 2
Feedback delay (seconds)

Figure 3 . Total task time with feedback delays

63

CONCLUSIONS

Future enhancements to the Tlaboratory include: placing the
pan/tilt/zoom under voice control, predictive displays and artificial
intelligence as an operator assistant. Additional experimentation will
include increased sample size, increased task difficulty, and improved task
boards and lighting. This experimentation will produce data to answer
questions proposed by previously research and will provide information on
telerobotics for space applications.

ACKNOWLEDGMENTS

This research is being supported in part by an equipment grant from the
Boeing Aerospace Company and grants from the Alabama Research Institute.

REFERENCES
1. Arnold, J. E. and P. W. Braisted, Design and Evaluation of a Predictor

for Remote Control Systems Operating with Signal Iransmission Delays,
NASA Tech Note D-2229, December 1963.

2. Brye, R. G., P. N. Frederick, M. Kirkpatrick, III, and N. L. Shields,
Jr., Earth Orbital Teleoperator Manipulator System Evaluation Program,
Report H-77-2, Essex Corp., Huntsville, AL 35803.

3. Collins, S. L. and R. B. Purves, "Remote Servicing of Space Systems,"
Proceedings of the Conference of Artificial Intelligence for Space
Applications, NASA, Huntsville, AL, Nov. 1986.

4. Deghuee, B. J., Operated-Adjustable Frame Rate, Resolution, and

Grey-Scale Tradeoff in Fixed Bandwidth Remote Manipulator Control,
Man-Machine Systems Laboratory, Report MIT, September 1980.

5. Ferrel, W. R., "Delayed Force Feedback," Human Factors, Oct. 1986.

6. Kirkpatrick, M., T. B. Malone, and N. L. Shields, Jr., Earth Orbital

Teleoperator Visual Systems Evaluation Program, Essex Corp.,
Alexandria, VA, March 1973.

7. NASA, Mechanical Hand for Gripping Objects, NASA Tech Brief MFS-23692,
Summer 1980.

8. Pennington, J. E., A Rate-Controlled Teleoperator Task with Simulated
Transport Delays, NASA Technical Memo 85653, Sept. 1983.

9. Pepper, R. L. and J. D. Hightower, "Research Issues in Teleoperator
Systems," Proceedings of the Human Factors Society, 1984.

10. Ranadive, V., Video Resolution, Frame Rate, and Grey-Scale Tradeoffs
Under Limited Bandwidth for Undersea Teleoperation, Report
TR-NR196-152, MIT, 1979.

11. Sheridan, T. B., Review of Teleoperator Research, Man-Machine Systems
Laboratory, MIT, 1984,

12. Yorchak, J. P., Teleoperator Human Factors Study, MCR 86-558, Martin
Marietta, Denver, CO, May 1986. 64

N88-16370

TELEROBOTIC CONTROLLER DEVELOPMENT

W. S. Otaguro, L. O. Kesler
McDonnell Douglas Astronautics Company
Huntington Beach, California 92647

Ken Land, Don Rhoades
NASA - Johnson Space Center
Houston, Texas 77058

ABSTRACT

Telerobotic experiments can be performed with existing
technology on the orbiter to demonstrate the feasibility to
perform supervised robotic material handling and positioning
functions in space. To meet NASA's Space Station's needs and
growth, MDAC has developed a modular and generic approach to
robotic control which provides near term implementation with low
development cost and capability for growth to more autonomous
systems. This effort uses the MDAC developed, vision based,
robotic controller and compliant hand integrated with the RMS arm
on orbiter. A description of the hardware and its system
integration will be presented.

A ground demonstration of this system will be performed at
the Manipulator Development Facility at NASA-JSC using a full
size, 1 G version of the orbiter RMS arm. Details of this
program will be presented.

INTRODUCTION

The objective of the MDAC/NASA Robotic Tracker demonstration
using the Manipulator Development Facility (MDF) arm at the
Johnson Space Center is to functionally demonstrate the
technology readiness of telerobotics (supervised autonomy) to
perform approach, positioning, engagement, and assembly under man
supervised but autonomous robotic operations. The MDF arm was
chosen for this demonstration because it represents the
implementation of teleoperation in space and can be readily used
to demonstrate telerobotics as well. The MDF arm is a 1 G
version of the shuttle RMS arm. Currently, the MDF arm is
teleoperated with direct man or computer preprogrammed control
and guidance.

TELEROBOTIC ARM DEMONSTRATIONS

This demonstration will use the existing MDF capability with
a robotic tracker developed by McDonnell Douglas. This tracker
will be used to process video camera inputs to determine target
position, bearing, and attitude and to guide the MDF arm under
operator supervision. The basic hardware elements and interface
are shown in Figure 1. The robotic tracker will interface to the

65

MDF system through an RS232 link to the SEL 32/77 computer. The
robotic tracker will be considered as a remote terminal and will
input and display the following:

1. Input pitech, yaw, and roll and X, Y, Z data for
operator command mode for MDF arm positioning.
2. Display data as the arm moves.

The tracker will also have the capability to perform command
check and obtain response from the SEL 32/77 computer.

The crew station will initiate and stop operational commands
as usual. The R12 panel will remain fully operational by being
able to input piteh, yaw, roll and X, Y, Z data and perform
command check.

This functional demonstration will perform manual target
lock-on with autonomous target tracking, MDF arm guidance,
approach, and positioning. The target range will be within 20
feet at acquisition. The target will be a standard grapple
fixture target and will initially be stationary. The initial
demonstration with a fixed lens camera will allow autonomous
approach to about 3 feet.

TEST PROCEDURE

The MDF arm operator will position the camera to have the
grapple fixture target in its field of view. The tracker
operator will then place the acquisition gate about the target
for lock-on by the tracker. After lock-on, the tracker will
calculate the target position and input to the SEL 32/77 the new
position (X, Y, Z) and attitude (pitch,, roll, yaw) to which the
end of the MDF arm is to be moved. Initially, the tracker will
estimate a straight line motion of the end of the MDF arm to the
target with discrete movement increments of several feet. As
confidence in the overall system operation is gained, larger
increments will be allowed. For any movement to be executed by
the MDF arm, the MDF operator must activate an execute control
button on the R12 panel. After each arm movement, the tracker
will calculate a new position and send it to the SEL 22/77 for
execution until the camera is approximately three feet from the
target.

DEMONSTRATION OPTIONS

After these static tests are completed, a series of moving
target tests may be performed where the target will be moved to a
new position after each arm movement. Also close in positioning
(1 ft) with respect to the target will be performed as allowed
by the availability of camera lenses and targets. Target
engagement by telerobotic control is also being investigated
using a compliant hand, which will incorporate vision based

06

tracker guidance for approach to the target with force and
position from the elements (fingers) of the hand for final target
engagement.

MDAC TRACKING SENSOR

The architecture of the multimode sensor tracker is shown in
Figure 2. The multiprocessor tracker is composed of three
functional parts:

1) A Fairchild CCD 3000 camera and video processor
2) The MDAC 673 image and tracker processor
3) The Z8000 executive control processor

The video tracking functions are computation intensive
requiring a high throughput special purpose signal processor. To
match the video data with the bandwidth of the image processor,
data compression is performed by the video preprocessor by either
excluding regions of the scene that are of no interest or by
performing a pixel averaging. This effectively performs video
windowing and an electronic zoom. The preprocessor also performs
a tracker controlled brightness and contrast adjustment to the
video image. This enhances the tracker's capability to see and
track the target.

The MDAC 673 is a high speed, 10 MOPS, special purpose
microcodable signal processor. All tracking functions are
performed in the MDAC 673. Existing algorithms are: (1)
correlation, (2) centroid, (3) conformal gate, and (4) guard
gate. The primary trackers required for these demonstration were
the correlation and centroid trackers. The correlation tracker
is a feature tracker that tracks by finding the best match of a
video reference image with the scene. The centroid tracker is a
contrast tracker that finds the center of the target exhibiting
intensities above or below a controllable threshold. The
conformal gate and guard gate trackers were required for
countermeasure techniques or when the target background exhibited
a lot of clutter. The conformal gate tracker is a statistical
tracker that classified the scene as either background, target,
or unknown. This tracker finds the target boundary and maintains
the tracker gate size to enclose all of the target. The guard
gate tracker detects when the target passes behind obstacles and
controls the other tracker's operations while the target is not
visible.

The Z8000 executive control processor directs the operation
of the multimode trackers, provides operator interface, and
controls the responses of the MDF arm. The executive processor
controls acquisition of the target, monitors each tracker's
aimpoint, and can reinitialize any tracker algorithm during the
engagement. The operator interface is provided through the hand
controller and the video monitor mounted on the tracking sensor.

67

The tracker configuration used in these demonstrations was
developed in 1981. Upgrades to increase its computing
capability, reduce its size, and lower its power consumption are
being implemented. CMOS devices will be used allowing
theprocessor speed to be increased from 5 to 10 MIPS for the
array processor and from 300 KIPS to 1 MIPS for the executive
processor. A floating point capability will be added. The pixel
rate will be increased from 5 to 15 MHz. Several boards (video
preprocessor and interface) will be reduced to a single 300 X 300
mil chip. Overall the power consumption of the packaged tracker
will be reduced from 200 to 25 W and the number of cards from 11
to 5. It is anticipated that a version of this packaged tracker
could be used in the Orbiter cabin.

COMPLTANT HAND

The MDAC-Compliant hand will consist of a drive unit, a
pullmember, a strain sensor and segmented elements (Figure 3).
The drive unit will be a brushless d.c. motor and a harmonic
drive. The pullmember will be a metal cable within a cable
guide. The sensor will be mounted between the motor and the end
of the segmented elements to sense the pulling force of the

pullmember.

The segmented element will be constructed of a number of
individual links and compression springs. The pullmember will
run from the pulley through the springs and through all links to
the end of the element.

The brushless d.c. motor will rotate a pulley on its shaft to
wind up the pullmember. The sensor will initially sense the
resisting force created by the compression springs within the
links and will feel a rapidly increasing force after contact with
the target.

The MDAC segmented elements, however, have a number of
individual links, which are separated by springs to average
forces between links. It is this principle that gives our
intelligent, sensor-controlled segmented elements the superior
capability to accept an objects random curvature where each
element develops its own shape. The number of links is not
limited and all link dimensions are adjustable to create the best
suited combination. The MDAC-Compliant hand (Figure 4) has four
segmented elements and a palm camera for object identification
and alignment control.

CONCLUSION

The capability of existing, packaged tracker and compliant
hand hardware to perform telerobotic control functions with minor
upgrades are functionally being demonstrated. Upgrades in
hardware and software will be required to address the

68

requirements of space operations. However, a great deal of the
basic development have already been and are being performed and
funded by other government agencies. This demonstration, with
the 1 G RMS arm, will provide additional information on the
integration of this technology with existing systems for near
term robotic space operations.

ACKNOWLEDGEMENTS

The support of Harry Erwin, Bob Lacy, Lynn Harvey, and Ann
Marie Ching of NASA, John O'Keefe of Bendix Corp., Klaus
Gruenbeck and Eric Griesheimer of MDAC-HB, and Al Eisenberg of
MDAC-Houston in the planning and execution of this effort is
gratefully acknowledged.

69

Coaxial Cable and DC Power

MDF Arm
MDF Control
mﬁtgitg SEL 32/77 | RTP
Display (Manual) Computer nput/Output Robotic
Tracker
Elements
Crew
Station Inputs
Figure 1. MDF/Robotic Tracker Hardware Elements
RAM Video Data
Memory
|
i Z8000
Video Preprocessor .
. Brightngss and Interface ® Executive/Control
contrast ® Video DMA control processor
Camera [= m 673 address control [1® Controls all I/0

® Video windowing
m Elect zoom
® Scene statistics

m Z8000/673
communication

sequencing
functions

® Controls tracking

VCS MDAC 673
m 64-bit parallel ® |mage processor
instruction —| ® Performs high
writable speed tracking
control store algorithms
Cursor
> Gen

PROM Instruction
Store

RAM Data Memory

v

Video Tape
Recorder

Video
Monitor

A/D-D/A
= MDF

Figure 2. Architecture of the Muitimode Tracker

~J
[ew]

Serial
® Host
® QOperator monitor

Operator Monitor
Controls

ORIGINAL PAGE IS
OE POOR QUALITY,

ORIGINAT

OI“ POOR QUALITY

PACE 19
E { v

Particular Se

Sensor
Location l
0.500

Pulley and
Drive Motor

Cavity for Mission- —1*:

nsors

Segmented
Element

&

~

Lo

N

” J.{.l
MAAAAMAARAAARAGA A

A

AAAR AL

Compression Springs

e

Solid Links

End-Effector
Base

-

L—:ﬁ;mﬂ ‘*»1‘ ‘(Vef Wi
e

e
(+)\}

.

w

-
A — Pull Member

le—— Motor Mount

Drive Schematic

Figure 3. Segmented Element Drive

Figure 4. MDAC Compliant Hand With Four Segmented Elements and Palm Camera

71

N88-16371
Software Simulation

of Time Delay in Teleoperation

K. Wayne Goode
Kenneth E. Johnson Research Center
University of Alabama in Huntsville
Huntsville, Alabama 35899

ABSTRACT

This paper describes research done in the Space Robotics Laboratory at
UAH studying the effects of time delay on teleoperation.

INTRODUCTION

The long range goal for the NASA space station is to establish a per-
manent presence of man and machines in space. Because of cost and safety
factors, teleoperation will be important to the fulfillment of this goal.

Teleoperation means remote operation. That is, the robot receives
instructions from a human operator and then performs the task. The task to
be performed is at a remote distance from the operator.

In space applications there is often a delay between the time the
human operator gives a command and time the command is executed in space.
There is a further delay before pictures from cameras located at the remote
site are relayed to the operator. As the time delay increases, so does the
time required to complete the task, thus making the operation of the remote
device more difficult.

The Johnson Research Center at the University of Alabama in Huntsville
has established a space robotics laboratory to study time delay and other
issues of teleoperation.

This paper will describe this lab and deal specifically with the soft-
ware written to control the robot and simulate time delays.

HARDWARE

Figure 1 presents a system schematic of the space robotics laboratory.
The laboratory is configured around a Puma 562 robot with 6 degrees of
freedom (see Figure 2) which is on loan from Boeing Aerospace Company in
Huntsville.

A custom designed joystick controller with two joysticks, each with
three degrees of freedom, is used to control the robot. These joysticks

are connected to the robot controller through an analog to digital inter-
face.

PRECEDING PAGE BLANK NOT FLMID

73

SOFTWARE

The software to control the robot is written in VAL II, the control
language for Puma robots.

Joystick Calibration

The joystick outputs a voltage in the range of 0 to 10 volts for each
axis. The minimum, maximum, and center are different for each axis. The
calibration program asks the operator to move each of the joysticks to its
extreme positions. The program reads the minimum, maximum, and center
voltages for each axis and stores the information for reference when
reading the joystick.

The interface is subject to electrical noise. The voltages will vary
by as much as 5%. However, since the joystick does not need to be very
precise, this is an acceptable error. To reduce the error, the joystick is
read several times and the values averaged.

Reading the Joystick

The subroutine JOYSTICK reads the joystick controller using the analog
to digital interface. The reading are normalized in the range -1 to 1
based on the calibration information recorded by the calibration program.
This number is squared to give more precise control around the center
point.

Any reading less than .05 is considered to be O. This dead zone
around the center keeps the robot from drifting slightly due to small
errors in the joystick reading caused by electrical noise.

Time Delays

The program DELAY (see listing 1) is the move program with a time
delay added. The program prompts the user for the length of the time delay
at the start of execution of the program.

When using a time delay, the program must read the joystick, store the
information, recall other information and move the robot accordingly. The
time required to execute each loop must be the same to keep the time delay
accurate. The program executes this loop seven times a second. The steps
it takes are:

1. Read the joystick.
2. Calculate the new position based on the readings.
. If the position is out of range use the last valid position.

3

4. Store position on the top of stack.

5. Pull next position off the bottom of stack.
6

. If the robot will complete the current motion by the end of the
time allowed for the execution of the loop (1/7 of second), com-
mand the robot to move to the position just pulled off the stack.

74

7. Wait until the time allowed for execution of this Tloop has
elapsed.

The robot can buffer one movement at time. That is, once a command is
given to start a motion the program proceeds without waiting for the
motion's completion. However, if another motion command is given before
the first motion is finished, the program will wait for the first motion to
finish and start the second motion before continuing with the program.

This can be a problem when the joystick must be continuously read.
The solution is to skip the movement to the new location when the current
movement will not be completed in the amount of time allowed. The robot
will catch up during the next motion command.

The amount of time for each loop must be held constant so that the
detay will be correct. An entry is read off the stack and a new one put on
each time a loop is executed. This way, the time delay can be changed by
varying the size of the stack. The stack should have seven entries for
each second of delay because each step is 1/7 of a step long.

The computer's clock is incremented 35 times a second and the Tloop
time must be a multiple of that time. 1/7 of a second was selected because
it was the shortest time in which the steps necessary to each loop could be
executed.

Rew video
o
Panena | %0 112
Pooer tiltumt -
tioy supply e
Zom S|
Row video B/Yw q lens -
camera :
!
1 Task t
Soard
Pums Gripper :
562 .
robot 3 .
I 8/w
Mene |—110Y
Robot r
controller Famery -
CONTROLLER
CONTROL MODULE
POWER COMPONENT CHAMBER
B/w Raw video VENTILATION & COOLING SYSTEN
momtor L L0 & CX BOARDS
Color Brw
monitor monitor
Controll PERIPHERALS
roller
o,
oo [aeor] e
supply
1oy l"::l‘l;’:NT VDT & DISK DPIVE
1oy Control console
Figure 1 Space Automation and Robotics Laborator Figure 2 Puma 562 robot

75

VAL II ROBOT CONTROL LANGUAGE

The function of many of the command of the VAL II Tlanguage are

obvious.

Some of the non-obvious commands and functions in the programs

listings in Appendix B are explained below.

ADC

BREAK

DECOMPOSE

HERE

INRANGE

MOVE
RIGHTY
TIMER(-1)

TRANS

SET

This function returns a value in the range -1023 to 1024 that
represents a voltage in the range -10 to +10 for the analog to
digital interface channel indicated.

This command suspends program operation until the current robot
motion has finished. Normally, the program starts a robot
motion and continues with the program execution.

This function returns the six components of a robot location.
The components are x, y, z, orientation, altitude and rotation.

This command assigns the current location to the specified loca-
tion variable.

This function returns a value indicating whether the specified
location is in the robot's work envelope.

This command moves the robot to the specified location.
This commands sets the robot in a right handed configuration.

This function returns the amount of time left before the current
robot motion is finished.

This function returns a location variable described by the six
components given. This is the opposite of the function
DECOMPOSE .

This command is used to assign a value to a location variable.

Listing 1

DELAY PROGRAM

OWoONOOTA~WN -

;Delay
;KW Goode 8JUL87

TYPE /C25, /U22, "Time delayed robot controlled program"
TYPE

CALL joystick
IF er THEN

TYPE
TYPE "The joystick power is turned off."
RETURN

END

scale 1 = 20

76

10

scale a =5

st =0

count = 0

rate = 5

tics = INT(tps + 0.5)

RIGHTY
MOVE TRANS (-800,0,-90,0,-90)

TYPE "Moving the robot to the starting position"

BREAK

HERE rpos
TYPE /U20,"
TYPE /U20, /S

PROMPT "Enter time delay in seconds ==>", delay

TYPE

steps = delay * rate
IF steps < 1 THEN
steps = 1

END

DECOMPOSE p[] = rpos
FOR i = 0 to steps
SET stack [i] = rpos
END
TIMER 1 =0

SET dpos = stack [st]

IF TIMER (-1) <tics/rate/TPS THEN
MOVE dpos

END

CALL joystick

p[0] = p[0] + x1l*scalel
p[1] = p[1] + yl*scalel
p[2] = p[2] + zl*scalel
pL3] = p[3] + x2*scalea
p[4] = p[4] + y2*scalea
p[5]1 = p[5]1 + z2*scalea

SET rpos 1 = TRANS(p[O0], p[11, pL2], pL31, p[4], p[5])

IF INRANGE (rposl) == 0 THEN
SET rpos = rpos 1

END

DECOMPOSE p[] = rpos

SET stack [st]l = rpos

st = st +1

IF st == steps THEN
st =0

END

count = count + 1

WAIT TIMER (1) >= (count*tics/rate -0.5)/TPS

GOTO 10

77

N88-16372

MTK: An Al Tool For Model-Based Reasoning

William K. Erickson and Mary R. Schwartz
Systems Autonomy Demonstration Project Office
NASA Ames Research Center
Moffett Field, CA 94035

Abstract

A 1988 goal for the Systems Autonomy Demonstration Project Office of the
NASA Ames Research Center is to apply model-based representation and
reasoning techniques in a knowledge-based system that will provide
monitoring, fault diagnosis, control and trend analysis of the Space Station
Thermal Management System (TMS). A number of issues raised during
the development of the first prototype system inspired the design and
construction of a model-based reasoning tool call MTK, which was used in
the building of the second prototype. This paper outlines these issues, with
examples from the thermal system to highlight the motivating factors
behind them, followed by an overview of the capabilities of MTK, which was
developed to address these issues in a generic fashion.

PRECEDING PACE BLANK NOT FILVM™D

79

N88-163873

Integration of Symbolic and Algorithmic Hardware and Software
for the Automation of Space Station Subsystems

Hugh Gregg, Lawrence Livermore National Laboratory
P.O. Box 808, L-310, Livermore, CA 94550
Kathleen Healey, Johnson Space Center
Houston, TX
Edmund Hack, Lockheed EMSC
Houston, TX
Carla Wong, Systems Autonomy Demonstration Project Office
NASA Ames Research Center
M/S 244-18, Moffett Field, CA 94035

Abstract

Traditional expert systems, such as diagnostic and training
systems, interact with users only through a keyboard and screen,
and are usually symbolic in nature. Expert systems that require
access to data bases, complex simulations and real-time
instrumentation have both symbolic as well as algorithmic
computing needs. These needs could both be met using a generadl
purpose workstation running both symbolic and algorithmic code,
or separate, specialized computers networked together. The
latter approach was chosen to implement TEXSYS, the thermal
expert system, developed by NASA Ames Research Center in
conjunction with Johnson Space Center to demonstrate the ability
of an expert system to autonomously control the thermal control
system of the space station. TEXSYS has been implemented on a
Symbolics workstation, and will be linked to a microVAX computer
that will control a thermal test bed. This paper will explore
the integration options, and present several possible solutions.

PRECEDING PAGE BLANK NoT FILMeD

C-au

81

N88-16374

Requirements and Options for Communications Services
in support of the
Systems Autonomy Demonstration Project

Richard M. Brown and Rcbert Yee
Systems Autonomy Demonstration Project Office
NASA Ames Research Center
Moffett Field, CA

Abstract

Work will begin this year on the development of the second of four
demonstrations of automation technology under the Systems Autonomy
Demonstration Project. This demonstration will involve elements of four
NASA Centers: ARC, JSC, LeRC and MSFC. Unlike the first
demonstration, intercenter digital data communications will be a vital
element of this demo.

This paper presents a study of the requirements and options for
interconnecting the development systems and demonstration testbeds at
NASA centers supporting the Systems Autonomy Demonstration Project.
The communications requirements of the SADP development and
demonstration environments are described, potential communications
protocols are examined and compared, the options for network topologies
are examined, and the expected communications error rates and system
availability are described.

PRECEDING PAGE BLANK NOT FIiLM:D

83

N88-16375

KBS V&V as Related to Automation of
Space Station Subsystems:
Rationale for a KBS Lifecycle

K. Richardson and C. Wong
Systems Autonomy Demonstration Project Office
NASA/Ames Research Center
Moffett Field, CA

Abstract

The role of V&V in software has been to support and strengthen
the software lifecycle and to ensure that the resultant code
meets the standards of the requirements document. KBS V&V should
serve the same role, but the KBS lifecycle is ill-defined. This
paper explains the rationale of the simple form of KBS lifecycle
- a development process with certain critical differences from
the traditional lifecycle.

Among differences is the requirements specification, which is in
some respects more flexible than in traditional software
development, but which nonetheless assumes a more significant
portion of the KBS development effort.

Special KBS development requirements are accommodated where
possible by modifications to the traditional software lifecycle.

Research areas are suggested for those aspects which present new
or unusual difficulties for V&V,

PRECEDING PAGE BLANK NOT FILMEZD

85

N8§8-16376

"Monitoring of Space Station Life Support Systems with
Miniature Mass Spectrometry and Artificial Intelligence"

Richard A. Yost and Jodie V. Johnson
Department of Chemistry
University of Florida
Gainesville, FL 32611

and

Carla M. Wong
Systems Autonomy Demonstration Project Office
M/S 244-18
NASA Ames Research Center
Moffett Field, CA 94035

Abstract

The combination of quadrupole ion trap tandem mass spectrometry
with artificial intelligence is a promising approach for monitoring
the performance of the life support systems in the space station.
Such an analytical system can provide the selectivity, sensitivity,

speed,

small size, and decision-making intelligence to detect,

identify, and quantitate trace toxic compounds which may accumulate
in the space station habitat.

PRECEDING PAGE BLANK NOT FILMTD

87

N88-16377

HSTDEK: Developing a Methodology for Construction of
Large-Scale, Multi-Use Knowledge Bases

Dr. Michael S. Freeman
NASA/Marshall Space Flight Center

Abstract

Marshall Space Flight Center is the lead center for the Hubble Space Telescope
Design/Engineering Knowledgebase (HSTDEK) Project which is being funded by
NASA's Office Of Aeronautics and Space Technology (OAST) as an element in the Core
Technology Research effort of the Systems Autonomy Technology Program (SATP).
The primary research objectives of HSTDEK are to develop a methodology for
constructing and maintaining large scale knowledge bases which can be used to
support multiple applications. To insure the validity of its results this research is
being pursued in the context of a real-world system, the Hubble Space Telescope. This
paper will describe the HSTDEK objectives in more detail, briefly discuss the history
and motivation behind the project, outline the technical challenges faced by the
project, and present the approach which is being taken to achieve its goals.

Introduction

The capture of design data and, to a lesser extent, design knowledge is already
an integral part of large-scale development programs within NASA. However, it is
primarily a manual and paper-based process. Even where design data is developed or
stored in an electronic medium, there is no common framework or representation
which permits the results of the traditional engineering activities comprising the
development effort to support an integrated application. With regard to design data,
for example, design of the structural components of a system may be done using a
Computer Aided Design tool but the weight and center of gravity of the components
are not directly available to the computer based tools used by the mass properties
analyst to calculate integrated system values. Nor is the expertise of the thermal
expert directly available to the electrical engineer designing some power consuming
(and thus heat generating) component of the system.

At present, design data is shared through the development of an enormous set
of paper documents on any major project, and expertise is shared by means of design
reviews based on these documents. These reviews are very costly, involving dozens of
experts, and typically identify hundreds of discrepancies which must then be
corrected in the design. Most of these discrepancies could be avoided if each expert
had the benefit of the other experts' related expertise throughout their design
instead of only at checkpoints such as Preliminary and Critical Design Reviews. If
that expertise exists only in the heads of our engineers, we will not be able to
effectively share it even within a project, much less between projects. But it is now
possible to capture that design knowledge in a form which will make much of it
constantly available. The capture of such knowledge and the design data to which it
refers in a particular domain, however, will result in a knowledge base whose scale
greatly exceeds that of current knowledge engineering efforts. It also implies an
ability, not currently available, to utilize knowledge about the design of a system to
support multiple engineering activities such as evolutionary design, fault diagnosis,
planning for operations and maintenance, training, etc.

PRECEDING PAGE BLANK NOT FILMED
89

The primary objective of the HSTDEK project is to develop a methodology for
constructing knowledge bases on the scale required to support NASA projects and for
making the diverse types of design data and design knowledge found in these
projects available for use by multiple knowledge based systems performing different
functions. That NASA projects in particular are excellent domains for the use of
knowledge based systems technology has been known for some time [1]. This fact is
now being recognized by NASA management as critical to achieving the goals we
have set for the 1990's and beyond, especially in the Space Station.

The Advanced Technology Assessment Committee (ATAC), which Congress
mandated in Public Law 98-371 to identify specific Space Station systems which
advance automation and robotics, has formed a subcommitiee to assess the state of the
art in design knowledge capture. Its recently released report concluded with the
following recommendation.

"NASA has an exceptional opportunity for both technology
benefit and technology transfer, which can succeed if NASA:

o Determines a firm course of action, and assigns
responsibility for execution of each step

o Provides the supportive environment needed for
community-oriented development

o Establishes and enforces community guidelines for and
standards for information exchange

o Encourages the effective development of emerging DKC
technology to a stage of readiness, while adopting a
discerning posture towards its use.” [2]

An Automation and Robotics program has been established in OAST to achieve the
goals set for NASA by ATAC in these areas. The Systems Autonomy Technology
Program (SATP), of which HSTDEK is an element, is the primary vehicle for pursuing
the ATAC automation goals.

The Systems Autonomy Technology Program

The overall program goal of the SATP is to develop, integrate, and demonstrate
the technology required to enable intelligent autonomous systems for future NASA
missions [3]. It is managed by the Chief of the Information Sciences Division at
NASA/Ames Research Center, with the advice of representatives from each NASA
center who comprise the Systems Autonomy Intercenter Working Group (SAIWG),
and has a planning horizon of about ten years. Within the Core Technology Research
effort of the SATP, the HSTDEK Project is an element of the Knowledge Acquisition
task in the Planning and Reasoning area. The goals of this task are defined as follows.

"The objectives are to develop the ability to preserve the
'corporate memory', i.e., to ensure that all the facts, heuristics, and
other information gained during the design, construction, and testing
of a device are available in a practically usable form during the
operational lifetime of the device." [4]

The HSTDEK project has been established in direct response to these objectives.

90

The HSTDEK Project

The HSTDEK Project is managed out of the Space Systems Division in the
Systems Analysis and Integration Laboratory of Marshall Space Flight Center (MSFC).
This Division has Systems Engineering responsibility for the Hubble Space Telescope
(HST) at MSFC, which is the NASA lead center for HST development. The project has
four main tasks, to be accomplished over a five year period, each of which involves
collaborative efforts with other organizations.

o Development of a methodology for construction of large-scale
knowledge bases which can each be used to support multiple
knowledge based applications.

o Assessment of the data products of the traditional engineering
activities which composed the HST development process as sources of
design data and design knowledge, as well as insertion points for
knowledge engineering technology.

o Construction of the HST Design/Engineering Knowledgebase itself.

o Construction of two knowledge based systems which validate the
methodology used to construct HSTDEK by performing multiple
functions in support of HST verification and operations.

This approach is based on the principle that research into the use of knowledge
engineering technology will be most effective if it is done in the context of a "real
world" application such as support of the Hubble Space Telescope. Each of these tasks
will be discussed in more detail below, but it is worthwhile at this point to discuss the
characteristics of the HST which led to its use as the domain for this project.

The Hubbl 1 i

It may seem odd, at first, to select a mature project such as HST as a domain in
which to develop methods for design data and design knowledge capture. The fact
that the design activities are essentially complete, however, offers a number of
advantages to this project. On a new program, it might be necessary to wait several
years for access to some design products and activities. Using a mature project, these
inputs are all available immediately and can be analyzed as a whole system of
activities. The refinement of the design products over the development cycle could
also result in a large amount of wasted effort in construction of a knowledge base.
This would not be a consideration if the goal was to use knowledge based systems to
support the development process. The goal here, though, is to develop a methodology
which will be useful in capturing the design data and knowledge rather than a
knowledge based system to assist in the design process. It is therefore preferable to
work from a set of design data and knowledge which is truly representative of that
produced in NASA development projects. In addition to the data products of HST
development, many of the experts involved in its design will still be available to
contribute their expertise to the project through HST launch and checkout. Finally,
NASA is about to initiate a number of major development projects; Space Station,
Advanced X-Ray Astronomical Facility (AXAF), the Orbital Maneuvering Vehicle
(OMV), etc. To select any of these projects, as the domain in which to pursue this
research would mean that the technology developed would not be available for use
during those projects. As described above, technology transfer into the Space Station
project is a major driver for this research and such delays are not acceptable.

91

In addition to the benefits offered by the timing of the HST project, there are
technical characteristics of the HST which recommend it as a framework for
research into design knowledge capture. It is a major NASA project, whose design,
construction, and test have taken many years to complete. It is typical of large-scale
NASA development projects in that it involves many technical disciplines, and the
integration of a design developed by a number of different contractors. As the
Project Management center, MSFC has responsibility for meeting cost, schedule, and
technical performance goals. Goddard Space Flight Center is responsible for the HST
Science Instruments, the Data Management system, the ground system, and the
Science Institute. The Lockheed Missiles and Space Company is the prime contractor
for the Support Systems Module (SSM), including its design, development,
fabrication, assembly and verification; integration of systems engineering and
analysis for the overall HST; and support to NASA for planning and implementing
ground, flight, and orbital operations support. Perkin-Elmer Corporation is
responsible for the Optical Telescope Assembly (OTA). Finally, the European Space
Agency (ESA) is responsible for the HST Solar Arrays. [5] This distribution of HST
expertise across a large number of experts in different organizations and at different
geographical locations, makes it a very difficult and unusual problem from the
knowledge engineering perspective, but also is typical of the NASA design domain. A
methodology which can handle the complexity of the HST domain is likely to be
useful in most NASA projects. Finally, the knowledge base developed in this project
will benefit the HST project itself throughout its fifteen year operational lifetime.
This will be a significant "spin-off" of what is, in itself, valuable research.

Proi Planni

The funding of the HSTDEK Project as an element of the Systems Autonomy
Technology Program implies a collaboration between MSFC and ARC. As the NASA
lead center for automation, ARC acts as a consultant to MSFC in planning the
knowledge engineering activities in HSTDEK including the selection of appropriate
development and delivery systems for knowledge based systems, as well as knowledge
engineering training for MSFC participants in the project. The four tasks identified
earlier as comprising the HSTDEK Project also involve collaborations among several
organizations, as discussed below.

The most fundamental task to be performed in the HSTDEK project is the
development of a methodology for construction of large-scale knowledge bases
which can each be used to support multiple knowledge based applications. These are
areas of basic research in knowledge engineering. The scope and complexity of the
design data and design knowledge to be captured in this project far exceeds that of
current knowledge bases. Current knowledge bases also are typically focused on a
single aspect of a system, with little knowledge of other subsystems or technical
disciplines. A necessary component of this task is the establishment of a framework
within which different types of knowledge about the HST can be accommodated. This
will allow knowledge based systems utilizing HSTDEK to reason from a deeper and
more basic understanding of the system. The use of a comprehensive knowledge base
like HSTDEK to support several applications will raise another major research issue;
the design of multi-user knowledge bases. This is an extremely difficult technical
problem [6,7], and will probably have to be addressed as a separate research project.
It should be noted that this goal of developing a methodology for constructing a
knowledge base which can accommodate the variety and quantity of design
knowledge required by NASA projects is not the same as developing a methodology
for capturing all the types of design knowledge typically generated in such projects,
but complements such efforts.

92

The research required to accomplish this task will be performed at the
Knowledge Systems Laboratory of Stanford University. The first year's effort will
have three major results; a small prototype of a multi-use knowledge base in the HST
domain, a set of knowledge representations to support the construction of a larger
multi-use knowledge base, and the preliminary specification of a methodology for
constructing large-scale, multi-use knowledge bases. The prototype will cover two
subsystems of the HST (the Pointing and Control System and the Electrical Power
System), one constructed at Stanford and one constructed at MSFC using the
knowledge representations developed at Stanford. It will support two applications,
probably fault diagnosis and a scheduling function. The knowledge acquisition effort
at Stanford will draw primarily on the expertise available in the HST designers at the
LMSC facility in Sunnyvale California, as well as work at the Lockheed Artificial
Intelligence (AI) Center. Knowledge base construction at MSFC is discussed below.

The second main task in HSTDEK is to assess the data products of the traditional
engineering activities which make up a NASA development project as sources of
design data and expertise, as well as processes which could directly benefit from use
of knowledge based systems technology. This is planned as joint research between
MSFC and the Computer Science Department of the University of Alabama in
Huntsville. The first product of this activity —will be a prioritized list of HST data
products as knowledge sources which will assist MSFC knowledge engineers in
attempting to acquire as much design data and expertise as possible from them. This
will be refined and generalized based on experience with other development projects
at MSFC. The other main product of this activity will be a recommended approach for
including knowledge engineering in NASA's traditional engineering activities.

The third main task in HSTDEK is actual construction of a large-scale
knowledge base which can support multiple applications. Initially, traditional
knowledge engineering methods will be utilized. As the Stanford research develops
improved approaches to the problem, they will be incorporated in this effort. Several
organizations will be involved in construction of HSTDEK, in addition to the Stanford
researchers. It is expected that the bulk of the actual knowledge engineering will be
done by MSFC personnel. To enable that effort, a six month knowledge engineer
training program at the Lockheed AI Center is planned for as many as ten MSFC
participants over the five year duration of the HSTDEK Project. This will have the
highly beneficial side effect of creating a significant knowledge engineering
capability at MSFC. The participation of Lockheed personnel as knowledge engineers
as well as domain experts is also being investigated, both through the Lockheed AI
Center and LMSC/Sunnyvale. The Lockheed AI Center has already been pursuing
several projects in the HST domain, and it is highly desirable to find a means of
incorporating these efforts into HSTDEK. Similarly, agreements with GSFC and the
HST Science Institute will be sought to enable their participation in HSTDEK.
Coordination of these efforts will be the responsibility of MSFC.

In order to confirm that knowledge bases constructed using the methodology
developed in this project can actually be used in multiple real-world applications, two
knowledge based systems will be built and demonstrated by MSFC in operational
environments. First, the HST Operational Readiness Expert (HSTORE) system will
utilize an early version of HSTDEK to support checkout of the HST during the Orbital
Verification phase immediately following HST launch. HSTORE is planned to provide a
fault diagnosis capability based on HSTDEK to MSFC engineers in the Huntsville
Operational Support Center. A second knowledge based system called GESST (Ground-
based Expert System for Space Telescope) will be made available for use in the Space
Telescope Operational Control Center at GSFC in 1992 using a more complete version of
HSTDEK. It is intended to fully demonstrate a large-scale, multi-use knowledge base.

93

Conclusions

In its third progress report, the ATAC voiced concerns that NASA was not
pursuing the development of automation technology rapidly enough to adequately
support Space Station design, and urged that NASA include a requirement for design
knowledge capture specifically in its detailed design and development phase proposal
requests for Space Station [8]. An earlier staff study by the Office of Technology
Assessment stated similar concerns and concluded that aggressive research should be
initiated without delay into advanced automation and robotics technology [9]. The
HSTDEK Project directly addresses these concerns by establishing collaborations with
members of the Al community, both in industry and academia, to effectively pursue
the research necessary to enable the capture of design data and knowledge in major
NASA projects, demonstrating this technology in the real-world domain of the
Hubble Space Telescope, and developing NASA's in-house ability to utilize such
technology.

References

1. Freeman, M. S., and Hooper, J. W., "Factors Affecting the Development of Expert
Systems in NASA", First Conference on Artificial Intelligence for Space
Applications, NASA/Marshall Space Flight Center and the University of Alabama
in Huntsville, October 1985.

2. "Design Knowledge Capture: State-of-the-art Technology and Application
Assessment”, Report of the Design Knowledge Capture Subcommittee of the
Advanced Technology Advisory Committee, September 1987.

3. "Systems Autonomy Technology Program Plan Executive Summary" (Final Draft),
NASA/Ames Research Center, July 1987, page 1.

4. "Systems Autonomy Technology Program (SATP) Plan" (Final Draft), NASA/Ames
Research Center, July 1987, page 29.

5. Space Telescope Systems Description Handbook, LMSC/D974197B, 31 May 1985,
Section 2.5.

6. Freeman, M. S., "The Emergence of Multi-User Expert Systems", Second Conference
on Artificial Intelligence for Space Applications, NASA/Marshall Space Flight
Center and the University of Alabama in Huntsville, November 1986.

7. Freeman, M. S., "An Investigation of Multi-User Expert Systems”, Dissertation,
University of Alabama in Huntsville, May 1987.

8. "Advancing Automation and Robotics Technology for the Space Station and for the
U. S. Economy: Progress Report 3", NASA-TM89190, October 1986.

9. "Automation and Robotics for the Space Station: Phase B Considerations”, an Office
of Technology Assessment Staff Paper, 1985.

94

N88-16378

Knowledge-Based Monitoring of the Pointing Control
System on the Hubble Space Telescope

Larry L. Dunham
Thomas J. Laffey
Simon M. Kao
James L. Schmidt
Jackson Y. Read

Lockheed Missiles and Space Co., Inc
0/62-85 B/579,
P.O. Box 3504
Sunnyvale, CA 94088-3504
(408) 742-3415

Abstract

This paper describes a knowledge-based system for real-time monitoring of telemetry
data from the Pointing and Control System (PCS) of the NASA Hubble Space Telescope
(HST) that enables retention of design expertise throughout the three decade project
lifespan by a means other than personnel or documentation. The system will monitor
performance, vehicle status, success or failure of various maneuvers, and in some cases
diagnose problems and recommend corrective actions using a knowledge base built using
nominal mission scenarios and the over 4,500 telemetry monitors from the HST. The
real-time system consists of a data management task, an inferencing task, and an I/O
task that run concurrently in multiple CPUs and communicate via a message passing
scheme. Real-time graphical displays can be selected by the user on the multi-level block
diagram of the HST control system displayed by the I/O task. This paper describes the
application of L*STAR to analysis of monitors from the PCS. A detailed description of the
multiprocessing architecture will be described in another paper in the conference. L*STAR
is undergoing continued development and is being used to monitor test cases produced by
the Bass Telemetry System in the Hardware/Software Integration Facility at Lockheed
Missile and Space Co. in Sunnyvale, California. LMSC is assembling the vehicle under
the direction of NASA /Marshall with a 1989 launch planned.

95

Introduction

Lockheed Missiles and Space Company (LMSC) is the prime contractor for the Support
Systems Module (SSM) and Integration Systems Engineering for NASA’s Edwin P. Hubble
Space Telescope (HST). The HST is considered one of the greatest scientific experiments
in history of mankind. The field of astronomy will be revolutionized by the opportunity
to see to the edges of the universe (14 billion light years away), seven times further than
we can now observe. Unimpeded by the Earth’s atmosphere, scientists will be capable
of seeing objects fifty times fainter than those visible today with a stability equivalent to
focusing a laser beam in Washington, D.C. on a dime in Boston!

The launch of the HST by the Space Shuttle has been delayed due to the Challenger
space shuttle accident. The current launch date is late 1989 and the lifetime of the space-
craft after launch is expected to be a minimum of fifteen years. This gives the total project,
from design to end of mission, a lifetime of over a quarter of a century. Capturing knowl-
edge of engineering experts to ensure continued expertise over the project’s lifetime is one
of the goals of the application described in this paper.

A second factor driving this application is the complexity of the ground operations task.
The Space Telescope Operations and Control Center (STOCC) at the NASA/Goddard
Space Flight Center in Greenbelt, Maryland, will monitor the vehicle’s health and safety
24 hours a day using three shifts of operators. There are almost 5,000 different telemetry
monitors in 11 different possible formats. Each format has a subset of monitors avail-
able in it, and the rate at which a specific monitor is reported varies from 40 hertz to
0.025 hertz. Execution of on-board stored program commands (SPC) are handled by a 40
hertz processing rate making it impossible for the operator to watch individual command
executions.

Lockheed’s Artificial Intelligence Center in Menlo Park, California, has been working
on developing a real-time monitoring tool called L*STAR (Lockheed Satellite Telemetry
Analysis in Real-Time). This knowledge-based monitoring system is still under develop-
ment with initial rule bases being centered on the Pointing and Control System (PCS), the
Data Management System (DMS), and the Electrical Power System (EPS). This paper
will address the PCS application of the L*STAR system. The PCS application, while far
from completion, has already led to many valuable insights.

Requirements

The real-time requirements of the PCS include the following: command verification,
safemode prevention warnings, configuration validation, performance assessment, and con-
figuration monitoring.

Command verification is the process of checking a new command against the configu-
ration of the spacecraft prior to the sending of that command. This is to ensure that the
command will not endanger the vehicle or interrupt the current mission. Verification would
include checks to prevent commands that would expose a scientific instrument aperture to
a bright object such as the Earth or the Sun, for example.

96

Safemode prevention warnings are messages to the operator that indicate a dangerous
condition developing and show the autonomous safety system checks done by the HST
flight computer that will initiate a response if ground action isn’t taken. The response
by the flight computer’s safemode system can range from shutting down subsystems to
shutting the whole flight computer down and passing control of the vehicle over to the
PSEA (Pointing/Safing Electronics Assembly). Almost all responses by the safemode
system abort the current command list and require recovery by the ground system. The
safemode prevention warnings are intended to warn the ground so that either the safemode
response can be avoided or anticipated.

Configuration validation checks compare the modes of various subsystems and ensure
that they are compatible. Certain states should never occur simultaneously. For example,
the attitude of the vehicle is not available for computations when the vehicle is in Drift
mode (used in deployment and recovery from safemode) or trying to align with the Sun
(Sun Point Control). Computations such as the Momentum Management’s Minimum
Energy Law which predicts the momentum profile for the next half orbit using the current
attitude should not be active during either of those two states.

Performance assessment allows the operator to know in real-time how successful the
planned mission is. For example, at each point in the mission, there is an anticipated
inaccuracy in the vehicle attitude. After an attitude update by the Fixed Head Star
Trackers (FHST), the error should be less than ten arcseconds, and after establishing lock
on stars with the Fine Guidance Sensors (FGS), the error should not exceed the radius
of the search used to find the stars. The operator would be warned if reported attitude
errors did not meet the expectations for any given time.

Configuration monitoring simply reports, to the operator, changes in the mode of any
subsystem. This includes unplanned changes such as those resulting from unexpected loss
of lock on the stars being used for guidance of the vehicle.

Organization of System

L*STAR uses rules from its knowledge base to intelligently monitor the HST telemetry
stream. So that the system does not have to examine the entire ruleset, each rule has
certain contexts in which it is valid. The rule will not be examined or triggered if its
context does not match the current context of the inferencing system. For instance, a rule
to check the performance of a vehicle maneuver does not need to be tested during Drift
mode. Rules may be applicable in a single context or multiple contexts. The context of
the inference engine is at all times identical to the mode of the HST. The mode of the HST
is an enumerated attribute with currently ten legal values: Drift, Inertial Hold, Science,
Sun Pointing Control, Loss of Lock, Attitude Hold, Maneuver, FGS Acquisition, FHST
Acquisition, Mechanism Motion, and PSEA.

Each flight computer software subsystem (total of 13) is a different class (i.e., schemata
or frame type) with unique attributes. They all have at least two attributes called Status
and Mode. Status is typically either normal or abnormal and Mode has values that are
specific to the subsystem.

97

A natural way to organize the rules that will potentially number in the thousands was
to put each subsystem’s rules in separate files. In each file the rules are titled with a
number assigned (similar to the Dewey Decimal System) as shown in Table 1. In some
cases the rules may fit two categories, in which case the lower number is used.

- determines subsystem mode

- determines subsystem variable attributes

context dependent limit checking

- checks for invalid mode switch or illegal
variable attributes

5.x - outputs messages to operator

W N =
MOoM MM
1

Table 1 - Rule Number Convention

A sample rule for testing to ensure that speed of reaction wheel 1 is normal for certain
contexts would look as follows:

RULE : "[3.1] Reaction Wheel 1 Check";

CONTEXT : { Inertial_Hold, FGS_Acq, FHST_Acq, Science,
Mechanism_Motion };

PRIORITY : 100;

AUTHOR : "Simon Kao/Larry Dunham";

IF ([value\monitor\QDVOMEVO] > 12.0) (*radians/sec*)
THEN [status\momentum_management\MOMAN] := abnormal;
send(10, ALERT, "QDVOMEVO", "Wheel speed 1 high at
%[time\satellite\HST]");!

An identical rule is needed for each of the other three reaction wheels. This need
for vector notation is common in satellite telemetry systems. Many monitors are posi-
tion vectors in the vehicle frame, or are sets of values for identical hardware (6 gyros, 4
wheels, etc.). Facilities for processing and manipulating vectors is generally not available
in commercial AI tools. This capability is being added to L*STAR and should lead to a
significant decrease in the total number of rules.

Temporal Reasoning

Commercial Al tools have few, if any, capabilities for reasoning about past, present, and
future events. For satellite telemetry monitoring it is a necessity to have such capabilities.
L*STAR has implemented them as built-in functions of the inference engine. Temporal
reasoning in the simplest form is the ability to use trends and statistics in rules via functions

98

such as rate-of-change and average value over a time period, for example. This makes it
straightforward to write rules based on the vehicle error decreasing or the commanded
body rate being steady.

The more complex part of temporal reasoning involves the difficulties of handling data
from telemetry with various time tags associated with them. The monitors are reported
at various rates and at various times. For example, if telemetry flags A and B cannot be
true at the same time, the fact that the last reported values are both true should not fire a
rule for illegal configuration. A or B may have just been reported true and the other value
has not been reported since that time, and the system needs to wait for the next sample
of the second monitor and discover if it is reported as still being true. If it is, then the
assumption (which in some cases is not valid) is that if one of the monitors was reported
true, both before and after the time that the other one was reported true, then at some
point in time they must have both been true simultaneously. However, for fast changing
monitors with slow reporting rates, even this logic is faulty.

An example rule is that the Minimum Energy Law should be off when the vehicle
mode is in Sun Point control. The vehicle mode flag changes very slowly, so that the user
is assured that two identical samples ensure a constant mode over that time period. If the
vehicle mode were reported twice as frequently as the Minimum Energy Law flag, then the
Table 2 shows the valid and invalid telemetry patterns.

invalid
valid sequences sequences
t =1.0 ME sample | on on on off off | on on off
t = 1.01 SP sample | off off on on on | off off on
t = 1.06 SP sample | off on on on off | off on on
t = 1.1 ME sample | off off off on on | on on on
t I

1.11 SP sample | on on on off off | on on on

Table 2 - Valid/Invalid Sequences for Temporal Reasoning

A rule prohibiting ((ME on) AND (SP on)) would have prohibited three of the valid
states. The L*STAR Inference Engine has an AND function being added to it to handle
rules of this type properly. This need is common in all telemetry sampled systems. Tools
which process rules based only on change data (e.g., an OPS5 based on the Rete network)
cannot handle these types of Relationships

L*STAR User Interface

The I/O Process, which can run on its own processor, provides sophisticated displays that
help both the console operators and the analysts. The operator is provided with messages

99

that are either information, alerts, or warnings. These messages are stored and recallable
using the mouse.

For the PCS, a set of hierarchical displays of the flight computer software is done in
great detail. The diagram shows the relationships of the various monitors. Each monitor
can be plotted on the screen in real-time by simply mousing the monitor name on the
diagram. The analyst can then track problems backward using the diagram to determine
the initial monitor that indicates abnormal behavior.

Conclusions

The L*STAR system has been proven to be able to handle real data from HST tests
and perform the monitoring in real-time. The multi-processor design allows for multiple
inference processes to be distributed to additional processors if the rule-base becomes
unmanageable in real-time for one processor.

The insights into the problems of satellite telemetry systems with regard to easy vector
notation and temporal reasoning have shown commercial tools severely lacking. L*STAR is
an attempt to fill that niche. Both insights and answers have been gained by having a team
consisting of personnel from the LMSC AI Center, the HST flight software development
group, and the ground system operations group.

This system is currently under development and is being used to monitor test cases
produced by the Bass Telemetry System in the Hardware/Software Integration Facility at
Lockheed Missile and Space Co. in Sunnyvale, California.

Acknowledgements

The authors wish to acknowledge the encouragement and support received from Wally
Whittier, LMSC HST S/W Program Manager in Sunnyvale, California.

100

N88-163879

TALOS: A DISTRIBUTED ARCHITECTURE FOR INTELLIGENT
MONITORING AND ANOMALY DIAGNOSIS OF
THE HUBBLE SPACE TELESCOPE

Bryant G. Cruse
Goddard Space Flight Center
Greenbelt, ML 20771

ABSTRACT

Lockheed, the Hubble Space Telescope Mission
Operations Contractor, 1is currently engaged in a
project to develop a distributed architecture of
communicating expert systems to support vehicle
operations. This architecture, called TALOS for
Telemetry Analysis for Lockheed Operated Spacecraft,
has potentially wide applicability to spacecraft
operations. The architecture mirrors the organization
of the human experts within an operations control
center. Initial development consisted of building a
successful prototype that functions within the
existing HAT ground system environment at Goddard
Space Flight Center. The prototype analyzes telemetry
from a history tape to determine the state of the

vehicle with respect to on-board safemode events. The
prototype 1is currently being expanded along two
fronts. One consists of expert system modules which

perform deeper-level diagnostics and which operate in
an off-line mode. The second is a high-speed front-
end expert systems which will monitor real-time
telemetry for anomalies and spacecraft status and send
activation and initialization messages to the off-line
modules when an anomaly is detected.

Design and implementation of practical expert
system applications to support a complex spacecraft
like the HST has posed a number of challenges. Choice
of expert systems tools to support the project has
projected a problem. Selection is constrained in the
first place by the requirements of hardware and
software compatiblity with the existing HST ground
system. Further, no off-the-shelf expert system shell
was found to have the necessary performance to support
real-time analysis of the HST’s engineering telemetry
stream. These factors have led to the selection of
two separate tools currently in development at the
Lockheed Artificial Intelligence Center. One has the
necessary speed to support real-time analysis and the
other has the flexibility required to diagnose a wide

range of anomalies. The requirements of TALOS have
been a significant driver for the development and
refinement of these two tools. The real-time

monitoring tool will be discussed in another paper at
this conference.

101

The TALOS architecture will be described and the
unique aspects of the project will be discussed.
Current status of the project will be reviewed.

102

N88-16380

A KNOWLEDGE-BASED SYSTEM FOR MONITORING
THE ELECTRICAL POWER SYSTEM
OF THE
HUBBLE SPACE TELESCOPE

BY

PAT EDDY

LOCKHEED ARTIFICIAL INTELLIGENCE CENTER
2710 SAND HILL ROAD, MENLO PARK, CA. 94025

ABSTRACT

Lockheed is currently in the process of developing expert
systems that perform on-line monitoring, statusing and trend
analysis of major Hubble Space Telescope (HST) systems. The
three major systems under development are the Pointing Control
System (PCS) [KLSRD87], the Data Management System (DMS) and
the Electrical Power System (EPS). These expert systems are
part of the TALOS [CW87] system for assisting in HST ground
operations which is being developed at Goddard Space Flight
Center. This paper will treat the EPS expert system (a part
of the TALOS distributed architecture).

This paper will describe the design and the prototype for
this system as demonstrated on 9/23/87 at the LMSC Artificial
Intelligence Center, Menlo Park, California. This prototype
demonstrated the capability to use real time data from a 32k
telemetry stream and perform operational health and safety
status monitoring, detect trends such as battery degradation
and detect anomalies such as solar array failures. This
prototype along with the PCS and DMS prototype expert systems
form the initial TALOS capability.

INTRODUCTION

Lockheed Missiles and Space Company (LMSC) is the prime
contractor for the Support Systems Module (SSM) and Integration
Systems Engineer for the Edwin P Hubble Space Telescope (HST).
Additionally, LMSC is the HST Mission Operations Contractor,
responsible for the ground operations that ensure the health
and safety of the HST.

The HST is a complex, state-of-the-art satellite with
unique ground operations requirements. Accordingly the ability
to reliably monitor telemetry in real-time is highly
desirable. To this end the Telemetry Analysis Logic for
Operating Spacecraft (TALOS) system is being developed.

103

The Talos system consists of real-time and off-line deep
analysis knowledge-based modules. This paper will concentrate
on the real-time monitoring and analysis EPS monitoring
system. The basis for this system is L*STAR, a Lockheed
proprietary tool. This shell [SRLK87] consists of a
multiprocessing architecture for performing real-time
monitoring and analysis using knowledge-based problem solving
techniques.

In order to handle asynchronous inputs and perform in
real-time, the system consists of three separate processes
which run concurrently and communicate via a message passing
scheme. The Data Management Process gathers, compresses, and
scales the incoming telemetry data before sending it to the
other tasks. The Inferencing Process consists of a proprietary
high performance inference engine, written in the C programming
language, which can run at a rate of close to 1000 rules per
second. It uses compressed telemetry data to perform a
real-time analysis on the state and health of the Space
Telescope. The I/0 Process receives telemetry monitors from
the Data Management Process and status/health messages from the
Inference Process, updates its graphical displays in real-time,
and acts as the interface to the console operator. The I/0
Process resides on DEC VAXStation II/GPX high resolution color
graphics workstation. It consists of a hierarchy of displays
which the user may traverse using a mouse. The three tasks run
concurrently and may reside on the same or different
processors. Furthermore, the multitasking architecture has
been designed in such a way that multiple inference processes,
multiple data management processes, and multiple I/O processes
can run concurrently and communicate with each other. It
processes several hundred telemetry monitors per second.

The population of L*STAR with HST EPS knowledge has

produced a very fast and reliable operator assistant to be
described in this paper.

EPS REAL-TIME TELEMETRY MONITOR

The TALOS EPS real-time telemetry monitor will provide
operators with the following real-time telemetry capability:

o HST Mode/Configuration Monitoring.

o Real-time EPS Statusing.

0 command Verification.

o) Multi Orbit Health History Tracking.

o) Ability to Handle Unexpected Telemetry LOSS.

(o} Correlation of Temperature, Power Error Histories.

o Real-time warning of approaching intelligent
thresholds.

o Real-time comparison of an EPS model generated power
profile with telemetry based EPS status.

0 Projection of telemetry based EPS status in accordance

with load and time parameters defined by a model

generated power profile.
o Suggested load changes to prevent exceeding limits,

104

One of the key elements required for this system to be able
to reason about the health and safety of the HST is knowledge
about the present and projected future operational mode of the
HST. Accordingly, this system establishes the following
contexts for the reasoning process:

Battery Reconditioning

Off Normal Roll

Stationary HST

Maneuvering HST

Orbit Day

Eclipse

Hardware/Software Sunpoint
Solar Array Repositioning
Seasons Of The Year
Orbital Decay

C0O000O0O0OOOCO

This system provides the operator with a top level
functional diagram of the end to end power flow of the EPS
starting with the Solar Arrays and ending with the Power
Distribution Units. Lower level displays show more detailed
diagrams of EPS components until all telemetry values are
accounted for. The EPS statusing capability consists of the
following:

EPS Configuration

SA power output

Status of K relays

Structure Current

Battery voltage/temperature

Battery Recharge Ratio

Diode Bus Current/Voltage

Sun to Orbit Ratio

Power Distribution Unit Current

Battery Shunt CKT Status

Solar Panel Assembly Connect/Disconnect
Distribution Bus On/Off

Heater Status

Voltage VS Temperature Change Current Controller
Activation Curves

O000OO0O0D0ODO0O0O0OO0OOO

The following capabilities will provide an EPS real-time
telemetry monitoring assistant that uses temporal reasoning and
communicates with other expert systems:

o Command verification will allow the automatic
indication of command group execution on a display of the
mission timeline, In addition, the EPS expert system will
receive indication of a command reject from the DMS real-time
monitor and such information as maneuver status from the PCS
monitor.

0 Multi-orbit health, history tracking will display and
compare a 15 orbit history set of events such as the following:

o] Trickle Charge Time

o] Maximum battery Voltage at Eclipse

o] Minimum Battery Voltage at Eclipse

105

o Management of unexpected telemetry loss 1s necessary
to support multi-orbit event tracking above. It will be
accomplished by designating a beginning/end of orbit event that
occurs at a predictable time such as K-relay closure. If the
required data has not been collected by the end of orbit then
that orbit will be shown as missing data and the data
collection process will be reinitialized for the beginning of
the next orbit.

o} Correlation of temperature, power and error histories
will allow the operator to compare any nulti-orbit health
histories for the purpose of identifying failure trends.

o Intelligent threshold warnings consits of monitoring
real-time EPS telemetry to provide operator warnings of
approaching anomalies as a result of reasoning about the
current operational mode on future loads.

o] EPS status and power profile comparison compare an EPS
model generated power profile with the actual EPS to show a
projected status based on the load as defined by the EPS
model. The operator may project the power status to a number
of orbits or hours in the future.

o Projection of load and time changes will allow the
system to obtain the results of proposed load and time changes
by extrapolating the telemetry based EPS status into the
future. In addition, the expert system will have access to the
projected electrical activity as defined by the power profile
and will be able to warn the operator of HST components or
science instruments that are scheduled to come on and approach
load limits.

0 Suggested load changes will give the operator access
to the projected loads created by HST components in their
operational configurations. When the power profile deviates
from the current EPS status the system will be able to access a
load shedding component list and make recommendations to the

operator.

ACKNOWLEDGEMENT

This work was done under the sponsorship of Tom Laffey of the
Lockheed Artificial Intelligence Center.

106

CONCLUSIONS

The work accomplished to date provides the operator with an
intelligent assistant that reasons about current system status
such as the following:

Battery Voltage

Charge Current

Bus Voltages and Current
Component Temperatures
Solar Array Output

OO0O0OO0OO0

It then advises the operator whether the above parameters
are normal in accordance within the following contexts:

o) HST maneuvering

o HST Stationary

o] Solar Arrays repositioning
(o] Orbit Day

o] Eclipse

Thus, this system advises the operator that a given current
is normal, not just within limits, while taking into account
maneuvering status and time of day. Future work will add
safemode, seasons, and orbital decay to this reasoning process.

The above information is presented in meaningfull displays
showing the end to end energy production and usage along with
lower level detailed displays. Warnings and adviseries are
provided. This work is on-going and future work includes
completing the requirements listed in this paper.

REFERENCES

[CW87] B. Cruse and E. Wende. Expert system support for
HST operations. 1In Proceedings of the 1987 Goddard
Conference on Space Applications of Artificial
Intelligence and Robotics, NASA Goddard Space
Flight Center, May 1987,

[KLSRD87) S. Kao, T. Laffey, J. Schmidt, J. Read, L. Dunham.
Monitoring the PCS of the Hubble Space Telescope,
Third Conference On Artificial Intelligence for
Space Applications, George C. Marshall Space Flight
Center, November 1987,

[SRLK87) J. Schmidt, J. Read, T. Laffey, S. Kao. A
Multiprocessing architecture for real-time
monitoring. Third Conference On Artificial
Intelligence for Space Applications, George C.
Marshall Space Flight Center, November 1987.

107

N88-16381

ARTIFICIAL INTELLIGENCE AND SPACE POWER SYSTEMS AUTOMATION

David J. Weeks
NASA/MSFC
EB12
Marshall Space Flight Center, AL 35812

Abstract

This paper will discuss various applications of artificial intelligence to space electrical
power systems. Completed, on-going, and planned knowledge-based system activities will be
overviewed. These applications include NICBES (the expert system interfaced with the Hubble
Space Telescope electrical power system test bed and one of the few NASA expert systems in daily
operational use; the early work with SSES; the three expert systems under development in the
Space Station advanced development effort in the core module power management and distribution
system test bed; planned cooperation of expert systems in the CM/PMAD breadboard at MSFC with
expert systems for Space Station at JSC and LeRC; and the intelligent data reduction expert system
under development.

Background

The size and complexity of spacecraft power systems are increasing dramatically.
America's first space station, Skylab, employed an eight kilowatt power bus. From fifteen to
twenty ground support personnel were required to monitor and control the electrical power sys-
tem on this early space station. At times, extensive crew involvement was necessary to correct
system faults. [3] [4]

The Electrical Power Branch at Marshall Space Flight Center has been involved since 1984
with the development of expert or knowledge-based systems to facilitate the automation of elec-
trical power systems. The expert systems developed thus far are focused on fault diagnosis and
contingency payload scheduling. Systems now under development address comprehensive fault
management, automatic rescheduling, and intelligent data reduction. Future plans involve the de-
velopment of expert systems for battery management, trends analysis, and component failure
forecasting. [5]

Several expert system prototypes have been developed including: the Hubble Space
Telescope electrical power system test bed diagnoser /analyzer named NICBES (NIckel-Cadmium
Battery Expert System), the Space Station Experiment Scheduler (SSES), and the Loads Priority
List Management System (LPLMS). Other current and proposed automation activities will also be
briefly discussed.

Hubble Space Telescope Expert System

The Nickel-Cadmium Battery Expert System (NICBES) is interfaced with the Hubble Space
Telescope electrical power system test bed at the Marshall Space Flight Center. A functional
block diagram is shown in Figure 1.

As presently configured, this breadboard is operated continuously and automatically
telephones the test bed personnel at work at home in the event of a test bed anomaly. When these
personnel arrive at the test bed site, they troubleshoot the system and take any steps necessary to
restore the system to full operational status while protecting critical flight-type components in
the test bed.

NICBES has three major functions in addition to the collection and storage of telemetry
data from the test bed. The first function or mode is fault diagnosis. NICBES will independently
verify the occurrence of an anomaly and recommend appropriate corrective actions.

The second mode is status and advice. NICBES will evaluate the status of each battery in the test
bed (there are six, 23-cell flight-type batteries) and give advice concerning each battery.

The third mode is the decision support graphics which offers 12 plots for any of the six
batteries in the system. These plots display summary data for the 12 previous simulated orbits.

PRECEDING PAGE BLANK NOT FLMED 109

ORIGINAL PAGE IS
OE POOR QUALITY,

DATA HANDLER
AND FILE SERVER

EIES

CURRENT AND

RS232

DNICRES
FAULT DIAGNOSIS

STATUS AND ADVICE
DECISION SUPPORT GRAPHICS

DEC LSi-11
TELEMETRY
HANDLER

BM PC/AT

HUBBLE SPACE TELESCOPE]

ELECTRICAL POWER SYSTEM

TESTBED: F
SOLAR PANEL ARRAYS
NICKEL-CADMIUM BATTERIES
BUSSES AND LOAD BANKS

OPERATOR

I STAR SD-15 I

FIGURE 1. NICBES Functional Bilock Diagram

NICBES was developed by the Martin Marietta Denver Aerospace Corporation in
Denver, Colorado under contract to NASA/Marshall Space Flight Center. [1] The expert system is
implemented on an IBM PC/AT in Prolog.

Contingency Payload Scheduler

The Space Station Experiment Scheduler (SSES) is a proof-of-concept demonstration pro-
totype expert system which schedules/reschedules payloads very quickly. Although SSES only
employes about a few of the scheduling constraints that the Marshall Space Flight Center
Experiment Planning System considers in Spacelab mission planning, it can reschedule 50 pay-
loads for a full two week period in less than three minutes. It considers power consumption, pay-
load duration, intermittent usage, crew attendance required, and priority class. Though a rela-
tively simple model, this expert system demonstrates that a dynamic rescheduler embedded in a
spacecraft power management system can help handle perturbations to the available power, as-
suring that power is utilized as it becomes available as well as avoiding the unnecessary load
shedding of critical payloads in the event of a reduction of the available power. [2]

Space power has historically cost about $1000 per kilowatt hour versus $0.05 per terres-
trial kilowatt hour. On Space Station maximum utilization of available power will be necessary to
accommodate all the experiments and other payloads on board. In the event of reduction of avail-
able power, it is imperative that a critical load is never shed unless absolutely necessary. A
Department of Defense or European Space Agency payload might be critical for national defense or
due to international agreements; a science experiment may have a critical window for operation;
or a materials processing payload may increase in importance as an expensive crystal nears com-
pletion and cannot be interrupted without incurring flaws.

The SSES was developed in 1985 by Technology Applications Inc. of Jacksonville, Florida
as part of the Space Station Advanced Development program. It is implemented in Large Memory
GC LISP on an IBM PC/AT with 3.5 megabytes. The graphics were coded in Turbo Pascal.

110

ORIGINAL PAGE g
OE POOR QuaLyTy,

Space Station Core Module Power Management and Distribution System Automation Project

One of the most ambitious automation projects at the Marshall Space Flight Center is the
Space Station Advanced Development effort for automating the Core Module Power Management
and Distribution (CM/PMAD) system. The CM/PMAD breadboard will employ three expert sys-
tems in addition to extensive conventional automation software to control the power system
breadboard as shown in Figure 2. The systems autonomy is pushed down as far as possible in the
system such that in the event of an automation breakdown at the lower levels, the next higher lev-
els will assume responsibility of the components below them in the hierarchy.

-} aaeET T SPACE STATION
LLP: Lowest Level Processor
‘;:::::ll‘r 8IC: Switchgear Interface Controller SIMULATOR
-1 &citiies ADC: Analog-to-digital card INTERFACE/GRAPHICS
EPPeEE BTk —

LOAD PRIORI ZAT ION
SCHEDULER EXPERT
SYSTEMS (LPIMS, LES)

SYMRBOLICS 3620

D

Remote
Tholator PAYLOAD DATA BUS

(RS 422

RECOVERY &
MANAGEMENT EXPERT
SYSTEM (FRAMES)
HFROR 1186

POWER INPUT

POWER INPUT

i i bl Doeeixy

POIVER
DISTRIBUTION DISTRIBUTION E
ASSEMBLY ASSEMBLY

— A S L

LOAD

SURSVSTEM
CENTER

DISTRIBUTOR
LRGPP

Siedesasan
S t33388

FIGURE 2. MSEFC SPACE STATICON MODULE EIRECTRICAL POWER SYSTEM BREADBOARD

The first of the expert systems is the Load Priority List Management System (LPLMS). The
LPLMS maintains a real time dynamic representation of all the module loads and relevant facts so
applicable rules can fire to reorder portions of the list as situations change.

The loads in a laboratory module may have dynamic priorities. A critical noninterrupt-
ible materials processing experiment involving crystal growth may have a different priority as
its nears completion. Other factors may change priorities such as equipment malfunctions. An
expert system such as LPLMS is critical in order to determine which loads must be shed in the
event of perturbations to available power for the module. It is imperative that the ‘critical’ loads
are not shed unnecessarily.

The LPLMS is currently implemented in the production language HAPS on the Symbolics
3600 series workstation. Load priority lists are sent down from the expert system to the conven-
tional processors in the breadboard every 15 minutes.

LES, the Load Enable Scheduler, can schedule and reschedule a number of payloads with
various scheduling constraints. This expert system will generate the baseline schedules for the
breadboard as well as accept information from the other processors on when and how to resched-
ule the power system payloads. LES refines the ground load enable requests and builds a detailed
mission activities list through simulation performance and list passing to the Supervisor
Subsystem Simulator (SSS).

FRAMES is the Fault Recovery And Management Expert System. This expert system watch-
es over the entire breadboard operation looking for anomalies and impending failures. FRAMES
functionality actually extends to the lowest level processors in the breadboard for comprehensive
fault management of the entire breadboard.

111

FRAMES is responsible for detecting faults, advising the operator of appropriate correc-
tive actions, and in many cases, autonomous corrective action implementation through power sys-
tem reconfiguration. The expert system will carry out trends analysis seeking incipient failures
and soft shorts as well as open circuits.

The more conventional automation software resides in the power control unit (PCU) and in
the lowest level processors (LLP). The PCU resides on a VME/10 system and performs process
database updates on system data such as the load time enable, load time disable, primary remote
power controller (RPC) number, secondary RPC number, switch permission number, nominal
maximum power value, upper voltage limit value, lower voltage limit value, upper current limit
value, lower current limit value, actual snapshot voltage value, actual snapshot current value, ac-
tual snapshot RPC total power value, and actual snapshot power value. The PCU also generates the
process command list, allocates individual LLP command lists from the command lists generated
by the Supervisor Subsystem Simulator (SSS) to the lowest level processors, allocates individual
LLP priority lists generated from the overall priority list developed by the LPLMS to the LLPs,
maintain the state of the actual load system within the present configuration list, graph the total
power output as a function of time per bus, maintain a failed components list, maintain a major
events list, provide a user interface for switching loads in and out (for emergency use where the
user assumes full responsibility for the breadboard operation), function as the central communi-
cations device, allocate database change information to the SSS, and execute emergency shutdown
procedures.

The lowest level processors maintain their individual command and priority lists, execute
command control as directed by the individual command list, execute local load sheds as directed
by their individual priority lists to save the bus from bad scheduling or overloading, execute
data compression, execute data reporting, handle condition exceptions, execute automatic switch
control, execute list directed switch control, verify configuration limits and allocations, and exe-
cute immediate commanded switch control. These processors are 68010 microprocessor-based
controllers.

The SSS simulates various module interfaces such as to other subsystems, other elements
of the overall Space Station electrical power system, the crew, and ground support elements. It
resides on a Xerox artificial workstation though it is not itself an expert system.

Together these various elements comprise a fairly elaborate approach to power system au-
tomation. It is anticipated that this advanced development effort will contribute to the actual
core module power management and distribution system automation on-board the Space Station.
Martin Marietta is providing the contractor support for this system development. [6]

Marshall Space Flight Center is also cooperating with the Lewis Research Center in a 1990
Power Systems Autonomy Demonstration. This project involves the entire Space Station electrical
power system test bed at two NASA Centers cooperating with the Space Station thermal control
system test bed at NASA's Johnson Space Flight Center. Ames Research Center has overall re-
sponsibility for this project under the Systems Autonomy Demonstration Program.

Intelligent Data Reduction

The IDARE (Intelligent DAta REduction) project is a research effort involving the capture
of the facts and heuristics that battery system specialists employ in determining the significant
components of battery telemetry data. The research will be directed toward the Hubble Space
Telescope power system test bed telemetry data and is expected to result in a knowledge-based
system which autonomously reduces this telemetry data to its significant components for further
trends analyses, improved system state-of-health monitoring, and fault prediction.

It is estimated that at any given time, perhaps 80 to 95 per cent of battery telemetry data
is insignificant. It is hoped that the telemetry data can be reduced by an order of magnitude. As
such data reduction is extremely labor intensive, an expert system would greatly reduce testing
analysis and operational support.

The IDARE project is being conducted in cooperation with the University of Alabama in
Huntsville under an university grant. If successful, applications are expected for complete elec-

112

trical power systems as well as other subsystems with propulsion personnel showing a special
interest.

Conclusions

Knowledge-based or expert systems are being demonstrated for electrical power system
applications involving proof-of-concept prototype intelligent systems. Artificial intelligence
approaches should not replace conventional computer programs that work well. Instead, these
knowledge-based systems should be employed to fill the gaps where traditional approaches either
perform poorly or cannot be employed at all.

If autonomous electrical power systems are to be incorporated on future spacecraft,
knowledge-based system prototypes must continue to be developed and demonstrated in fairly re-
alistic electrical power system breadboards and test beds. Program managers must be convinced
that these systems are safe, reliable, and can be developed within cost in a timely fashion.

References

1. Kirkwood, N. and D.J. Weeks, "Diagnosing Battery Behavior with an Expert System in
PROLOG," Proceedings of the 21st IECEC, San Diego, CA, paper 869410, August 1986, pp. 1801-
1807.

2. Touchton, R.A., "Common Module Dynamic Payload Scheduler Expert System," Proceedings
of the 21st IECEC, San Diego, CA, paper 869406, August 1986, pp. 1785-1790.

3. Weeks, D.J. "Application of Expert Systems in the Common Module Electrical Power
System,” SPIE Vol. 580 Space Station Automation, Cambridge, MA, September 1985, pp. 35-39.

4. Weeks, D.J. and R. T. Bechtel, "Autonomously Managed High Power Systems," Proceedings
of the 20th IECEC, Miami FL, paper 859157, August 1985, pp. 1.132-1.138.

5. Weeks, D.J. "Expert Systems in Space,” IEEE Potentials, Vol. 6, No. 2, 1987, pp. 18-21.

6. Weeks, D.J. "Space Power System Automation Approaches at the George C. Marshall Space

Flight Center," Proceedings of the 22nd IECEC, Philadelphia, PA, paper 879104, August 1987, pp.
538-543.

113

N88-16382

EMBEDDED EXPERT SYSTEM FOR
SPACE SHUTTLE MAIN ENGINE MAINTENANCE

BY:
J. Pooley, W. Thompson, T. Homsley, and W. Teoh, PhD
SPARTA, Inc.

4901 Corporate Drive
Huntsville, Alabama 35805

J. Jones and P. Lewallen
NASA Marshall Space Flight Center
Huntsville, Alabama

ABSTRACT

Space Shuttle Main Engine {(SSME) maintenance, whether preventive, scheduled, or
unscheduled, is a major escalating cost item. Significant progress has been made in the NASA
and Air Force communities toward performance of the health monitoring function in
instrumentation, analysis techniques, and envelope (trends and rate of change) monitoring.
Current techniques require that domain experts be integrally involved in the analysis session and
make on-line decisions to direct analysis. The SPARTA Embedded Expert System (SEES) is an
intelligent health monitoring system that directs the analysis by placing confidence factors on
possible engine status, then recommends a course of action to an engineer or the engine
controller. This technique can prevent catastrophic failures or costly rocket engine down time
because of false alarms. Further, the SEES has potential as an on-board flight monitor for reusable
rocket engine systems. The SEES methodology synergistically integrates vibration analysis,
pattern recognition, and communications theory techniques with an artificial intelligence
technique - the Embedded Expent System (EES). This integration affords a robustness via the
analysis techniques with an ability to resolve conflicts by the expert system techniques.

TION

A critical element of the Space Shuttle Main Engine (SSME) program is the development of a
turbo-pump health monitoring system (HMS). A HMS that could predict incipient failures and
permit routine maintenance to be scheduled based on performance indicators would dramatically
reduce the need for refurbishment, improve equipment availability, and make maintenance more
cost-effective. The key functions of an effective HMS are shown in Figure 1.

. RECOGNIZE AND CATEGORIZE PERFORMANCE
(Baselining Of Performance Standards)
. RECOGNIZE AND CORRELATE INDICATORS OF IMPENDING
FAILURE
(Incipient Fallure Prediction)
. RECOGNIZE AND CORRELATE INDICATORS OF NEED FOR

REMEDIAL ACTION
(Scheduling Of Routine Maintenance In A Cost-Effective
Manner)

Figure 1. HMS ESSENTIAL FUNCTIONS

PRECEDING PAGE BLANK NOT FILM=D
115

Significant progress has been made in the NASA community toward performance of the
HMS functions. There have been relevant advances in instrumentation [4,1], analysis techniques
[2,5], and in detection of anomalies and failures [3). Each of these advances has demonstrated
individual attributes useful for an HMS to correlate failure modes with turbo-pump components at
risk. However, an integrated HMS that uses and updates the SSME data base is possible through
the use of emerging Al techniques. Al techniques, specifically a rule-based expert system, can
enhance the functions of an HMS. SPARTA has developed and adapted a set of algorithms to
produce an innovative application of Attificial Intelligence techniques. The keystone of this
application is an expert system that uses confidence levels to resolve conflicts among compound
data, and that heuristically trains on each data set to derive (or modify) classification rules. This
expert system has been named SEES, an acronym for SPARTA Embedded Expert System.

EE TUR

The SEES architecture is shown in Figure 2. In SEES, conventional computation methods
are used to reduce the raw data to a manageable "derived” data set, and to extract pertinent
information (signatures) from the derived data set. This information is then used by the SEES to
derive rules, with the help of domain experts/knowledge engineers, to establish a knowledge
base. In future phases, SEES will use this set of rules to determine engine conditions during
SSME testing.

MAJOR COMPONENTS

As can be seen from the architecture in Figure 2, there are three major subsystems to the
SEES HMS: The SEES front end (SFE), the embedded expert system (EES), and the
supportfunction library (SFL). The SFE processes the raw data to screen obvious anomalies and
to derive the reduced data set, then generates from it an appropriate signature. The process of
data screening, reduction and signature generation is the unique and proprietary innovation of
SEES. The embedded expert system (EES) uses this signature and the reduced data, with the
help of the SFL and the rule set in its knowledge base, to infer the operating conditions at a given
instant, deduce the mean time to failure and recommend maintenance schedules. The SFL, as its
name implies, is a set of supporting functions for the rest of the HMS.

SEES FRONT END (SFE)

The SFE is comprised of signal analysis techniques that convert raw count accelerometer
data to Engineering Units and transform the data to the frequency domain using Fast Fourier
Transforms (FFT) to derive a power spectral density (PSD) for input to a Data Conditioning Module.
The Data Conditioning Module processes the PSD signal to remove the extraneous components.
Finally, the conditioned PSD is evaluated as a candidate for signatures derived during this
processing (by the Pattern Matcher) or binned to be considered for establishment of another
signature.

SEES SUPPORT FUNCTION LIBRARY (SFL)

The SFL consists of the algorithms that transform reduced data into symbol structures for
use by the Development Engine and/or the Inference Engine to accomplish inference and control.
This transformation is accomplished by applying communications theory and image processing
methods to the SFE conditioned data.

SEES EMBEDDED EXPERT SYSTEM
The Embedded Expert System (EES) is an integral part of the HMS. The EES is a rule based
knowledge system that uses forward chaining strategy, and has the ability to recognize and

categorize performance, incipient failure and the need for remedial action. It consists of a
development engine, a knowledge base, an inference engine, and a user interface.

116

The Development Engine

The development engine is a subsystem of EES which is intimately related to the knowledge
acquisition process; it allows a knowledge engineer to transcribe the knowledge gained from the
domain expert into a set of rules that make up the knowledge base. A basic characteristic of the
SEES problem in analyzing SSME vibration data is the volatility of signatures and the importance
of high rate vibration data. While some rules can be developed, the evaluation of data in real-time
leads to the requirement to merge information from multiple sources. This leads to the use of the
blackboard architecture for storing intermediate hypotheses, the use of a certainty factor merging
heuristic and rule-use counting as a "rule-critic".

The SEES Knowledge Base

Based on SPARTA's study of the training sets, we expect the knowledge base to be quite
large. Our investigation indicated that signatures may be extracted and meaningfully classified.
Thus, the rule set may be ordered in an appropriate manner (e.g., a rule tree) to reduce search
space. The nature of the data is such that one can seldom specify a diagnosis with absolute
certainty. Thus in SEES, certainty factors will be used to reflect uncertain information. These
certainty factors can be either computed algorithmically by the development engine based on
derived or existing knowledge, or estimated by domain experts or knowledge engineers.

Th EES Inferen Engin

The SEES HMS is basically data driven. Thus, a forward chaining strategy is appropriate.
The incoming data, although reduced by the SFE, is still quite complex, and entering the HMS at a
high rate. The EES inference engine must and will have the capability to invoke functions in the
SFL for turther data reduction. Perhaps one of the more important tasks of the inference engine is
to determine when an unknown situation (i.e., not in the rule base) occurs. It should be able to
coordinate with the domain expert or knowledge engineer and pass the new information to the
development engine to create new rules, or store the information to accomplish the same at a later
time off-line when a domain expert is available. The inference engine must provide information to
the explainer to produce explanation on demand. The explainer is a subsystem of the user
interface and can provide explanations as to how a conclusion is reached. This can be
accomplished in a variety of ways; the one selected by SPARTA is to leave the time history of
SEES events in the blackboard for post mortem examination.

SEES User Interface

The user interface is the component of an expert system that acts as an interface between
the expert system and the user who is not necessarily a domain expert. Thus, it should have the
capabilities to: (1) Solicit input from the user, (2) Provide output to the user - this output may be in
the form of questions, recommendations or conclusions, and (3) Provide explanations on
demand. One important aspect that can be implemented is a possible data link between the user
interface and the SSME controller. This would serve as a means to assume control of the engine in
unusual situations, such as when an imminent engine failure has been detected, and an immediate
engine shutdown becomes necessary to prevent catastrophic failure. This feature is, of course,
not needed for off-line testing.

IMPLEMENTATION

Preliminary investigation to date has been carried out using a VAX780 computer in
FORTRAN. ltis anticipated that the final system will be implemented in FORTRAN or Cto runon a
MASCOMP computer. This computer is chosen because of the outstanding data acquisition
capabilities which is a critical aspect of SEES. Equally important is the fact that a variety of
languages and utilities are available commercially for this micro-supercomputer. A decision has to
be made as to the language used to develop the embedded expert system (EES). One can
choose the more traditional approach of using LISP or PROLOG (both of which are available to the
MASCOMP, and both can interface with the rest of the system if it is written in C. We have decided

117

to use RULE MASTER by Radian Corporation. This is an expert system shell that would allow us to
develop EES rapidly, and can be integrated to the rest of SEES easily.

PRELIMINARY RESULTS

The vibration time series is analyzed in a discrete data format. The data is first transformed
into a power spectral density (PSD). Each discrete PSD is the power average over a small time
interval at a frequency with a certain bandwidth. The power level of a frequency line is then
temporalized. Figure 3 shows the amplitude time history of one important frequency band. The
accompanying SSME power profile shows the shift from 100% to 104% power level. The
amplitude of the time history shows a marked decrease at that time. Other bands show an increase
at ramp up to 104%. The characterized signatures consist of a covariance matrix, C, which
measures coupling between components of the sample vectors and the mean sample vector, M.
A signature is a measure of the turbo-pump’s performance profile at a given load condition. When
a turbo-pump is operated at a load condition for an extended period, its performance may degrade
from nominal to anomalous. This degradation is measured by the HMS and characterized into a
class ensemble of signature, at a load condition. Two signatures characterized from the SSME test
are presented in Figure 4. The spectral components of these signatures are very complicated;
therefore, Al techniques must be used to classify data.

N ION

Preliminary analysis has shown that the SEES development engine successfully extracts
signatures from SSME test data that can be formulated into rules for the SEES knowledge base.

BREFERENCES

[1] Barkhoundarian, S. and A.T. Zachary, Condition Monitoring For Space-Based Reusable
Rocket Engines”, ASME Winter Annual Meeting, New Orleans, LA, December 1984.

[2] Coffin, T. and J.Y. Jong, "Signal Detection Techniques for Diagnostic Monitoring Of Space
Shuttle Main Engine Turbomachinery”, NASA Technical Report 66938-01, February
1986.

[3] Evatt, J.C. and W.W. Palmquist, "Failure Control Techniques for the SSME", NAS8-36305,
Phase | Final Report, Rockwell International.

[4] Hampson, M.E., J.J. Collins, M.R. Randell, and S. Barkhoundarian, "SSME Bearing Health
Monitoring Using a Fiberoptic Deflectomer”, NASA Conference on Advanced Earth-to-
Orbit Propulsion Technology, Huntsville, Alabama, May 1986.

[5] Jong, J.Y. and Thomas Coffin, "Diagnostic Assessment of Turbomachinery by Hyper-

Coherence Method", NASA Conference on Advanced Earth-to-Orbit Propulsion
Technology, May 1986.

118

CHANNEL 8 (92, 1))

ORIGINAL PAGE I§

CF POOR QUALITY

USER

!

EES
]
SSME USER SUPPORTING FUNCTIONS
CONTROLLER INTERFACE LIBRARY
y ON-UINE 1 + CHARACTERIZATION
J BY MOMENTS
OFF-LINE
INFERENCE * CEPSTRUM
1 ENGINE . HYPER
DATA ACQUISITION y COHERENCE
AND TRANSFORMATION
. PATTERN
CALIBRATION MATCHER
FFT/PSD |
CHANNELIZATION 4 . SIGNATURE
FEATURE EXTRACTION SEPARABILITY
DATA KNOWLEDGE
BASE BASE . DISCRIMINATOR
A 1 1 - DIVERGENCE
L DATA CONDITIONING]
- BASELINE
‘ RUN v PERFORMANCE
DEVELOPMENT - FEATURE
SIGNATURE é > ENGINE 44— seLecTioN
CHARACTERIZATION
4
DEVELOPMENT BT
v
DOMAIN EXPERTS
FIGURE 2. SEES - HMS ARCHITECTURE
TIMES OF
3 t4 SIGNATURE
o2 t 15 8 17 ¢ 112
12— —— — INITIATION T T —
1@ 162 - 110}
Y 2 t
2@302-t MR
£ 3@952-13 g
S i ’ © 106}
4 ! 4@ 100.2 - t4 o
z | s T 104p— — —— ——.
E3 l 5@ 1124 -t g
(o]
“ 6 @ 1266 - 16 & 102f
0 | 7 @ 2058 - t7 100 N AN .
0 25 50 75 100 125 150 175 200 225 250 0 25 S50 75 100 125 150 175 200 225 250
TIME (sec) 8 @ 224.0 TIME (sec)
FIGURE 3. TEMPORALIZED DATA OF CHANNELS FROM SSME TEST #A2-356-5042
SIGNATURE 1 SIGNATURE 2
EXTRACTED AT 30.2 SECONDS FROM
a0 ot comeres s scones o ey SIS & G s 112
L 1.00 5 1.00
H x
3 g
] 4
[Y
0.10 0.10
0.01 _AJJLM 0.01 MMA_J.
0 128 256 384 512 640 768 890 1024 0 128 256 384 812 60 768 8O0 1024

FAEQUENCY LINES

0 640 1280 1920 2560 3200 2840 4480 6120
FREQUENCY (M2)
-

FIGURE 4. TYPICAL SSME SIGNATURES

119

FAEQUENCY LINES

0 640 1280 1920 2560 3200 3840 4480 5120
FREQUENCY (1)

0387-01%/14

N88-16383

QUALITATIVE AND TEMPORAL REASONING IN ENGINE
BEHAVIOR ANALYSIS

W.E. Dietz
M.E. Stamps
M. Ali

The University of Tennessee Space Institute
Tullahoma, TN 37388

ABSTRACT

one of the challenging difficulties in automatic fault
diagnosis is generating a qualitative understanding of how a
physical mechanism behaves in abnormal situations. Numerical
data generated accross time by simulation models reveals
changing internal states and mechanism behavior. However,
understanding and interpreting such data by computers, an
important part of monitoring, operating, analyzing, diagnosing,

and debugging complex physical mechanisms, have been difficult
tasks.

Diagnosis of physical mechanisms if often accomplished by
analyzing various physical parameters qualitatively, i.e. by
analyzing trends and relative magnitudes of parameters.
Temporal information, such as the relative times at which
various parameters exhibit changes in behavior, is also an
important aspect of diagnosis.

An approach is being investigated at the University of
Tennessee Space Institute to apply qualitative and temporal
reasoning to analyze mechanism behavior and to diagnose faults
in physical mechanisms. The present domain is jet engine
diagnostics; however, the approach is applicable to other
domains.

In the present study, numerical simulation models, engine
experts, and experimental data are used to generate qualitative
and temporal representations of abnormal engine behavior.
Engine parameters monitored during engine operation are used to
generate qualitative and temporal representations of actual
engine behavior. Similarities between the representations of
failure scenarios and the actual engine behavior are used to 1)
diagnose fault conditions which have already occurred, or about
to occur, 2) increase the surveillance by the monitoring system
of relevant engine parameters, and 3) predict likely future
engine behavior.

The stored failure representations include both sudden
failures and slowly developing fault conditions. As a result,

the system can detect developing faults which have not yet
caused a parameter to exceed safety limits.

The stored representations of failure scenarios also allow

121

SRECEDING PAGE BLANK NOY FILMI

The stored representations of failure scenarios also allow
predictions of engine behavior to be made. This information is
used by the monitoring system to focus attention on the most
relevant engine parameters. Predictive behavior is also used in
advising the pilot on appropriate corrective action.

122

N88-16384

Exploring Hypotheses in Attitude Control Fault Diagnosis

Benjamin Bell
GE Astro-Space Division
U7049 P.O. Box 8555 Philadelphia PA 19101

Abstract

Recent activity in spacecraft design has been geared toward providing an assortment
of new capabilities in space, in an attempt to satisfy the demanding mission requirements
posed by such programs as the Strategic Defense Initiative (SDI) and Space Station. These
requirements will include on-board fault detection and fault correction, and current work at
GE Astro-Space is addressing this area through the use of knowledge-based systems. This
paper describes a system which analyzes telemetry and evaluates hypotheses to explain
any anomalies which are observed. Results achieved from a sample set of failure cases are
presented, followed by a brief discussion of the benefits derived from this approach.

1. Introduction

The attitude control subsystem (ACS) orients and stabilizes the satellite after launch
vehicle seperation, maintains pointing during on-orbit and payload operations, and controls
the satellite attitude during orbit-adjust operations. Spacecraft attitude is of critical im-
portance, since a slight error in vehicle alignment not only degrades mission performance,
but also may cause changes in momentum rates that may propagate until the spacecraft is
spinning out of control. Current architectures provide some level of autonomy in the ACS
via closed-loop control, which can generally compensate for-attitude errors attributable
to normal vehicle dynamics. More serious errors are handled from the ground, during a
process which includes a rapid effort to put the satellite into a safe state (thirty minutes
to several hours), followed by an analysis phase which may take several weeks. During this
time, mission performance may be interrupted, a situation which is not compatible with
Government objectives.

To better maintain mission performance and to avoid propagation of attitude errors,
anomalous conditions must be detected and isolated as rapidly as possible. This goal
becomes harder to achieve as satellites become more complex; but if the satellite itself
were capable of performing fault-isolation, then the risk of serious failure would be greatly
reduced, along with the need for highly skilled ground personnel.

The ACS Diagnostic System demonstrates the potential of knowledge-based sys-
tems to offer this capability. As a preliminary step toward achieving satellite autonomy,
this diagnostic program performs ground-based detection and isolation of faults within
a satellite ACS. Detection of an anomaly triggers the generation of hypotheses. By ex-
tracting information from the telemetry useful to its diagnosis, this system independently
‘pursues each possible explanation. The likelihood of each explanation depends on features
identified in the telemetry; additionally, explanations are ruled out when contradictory
evidence appears in the telemetry.

123

2. Current Diagnostic Procedures

Present techniques for diagnosing ACS faults rely on attitude error limits for detection.
If the satellite attitude error limits are exceeded, the primary objective is to put the satellite
into a safe state, which may involve unloading the momentum in the wheels, performing
Auto Sun Acquisition, or disabling thrusters. Diagnosis proceeds only after the satellite
is in a safe configuration. The principal technique employed in locating the source of the
anomaly is to switch to a redundant component and then recheck the anomalous telemetry.
In the case of a Reaction Wheel anomaly, the suspect wheel is turned off and the telemetry
is monitored with the satellite operating on three wheels.

Effective application of these procedures requires some degree of expertise. For exam-
ple, the choice of which component to switch with its redundant partner relies in part on an
examination of certain informative telemetry behaviors. The diagnostic system, therefore,
requires expertise, so that it may apply knowledge of the ACS and of telemetry analysis
to explain a currently observed anomalous condition.

3. Expert Knowledge

To trouble-shoot anomalies, ACS analysts generally rely on their knowledge in the areas
of telemetry interpretation, failure mode behavior, and diagnostic strategies. Telemetry
interpretation knowledge is applied when the analyst extracts useful information from the
large volume of telemetry data. Examples of such information are transients and trends.

Failure mode knowledge may be encoded by capturing the expert’s mental represen-
tation of a failure. Analysts often characterize an ACS failure in terms of the symptoms
(anomalies) which may appear during that failure, including qualitative measures of the
support a particular symptom lends to a hypothesized failure. The expert might indicate,
for example, that during a tachometer failure there is a high probability that the wheel
speeds will oscillate.

Knowledge about diagnostic strategies defines the expert’s own internal protocol for
diagnosing faults. It was determined through interviews with ACS analysts that the expert
initially reacts to an anomaly by considering all possible explanations, creating a mental
model for each hypothesis. The expert then seeks evidence which can distinguish among the
possible failures, primarily by comparing the actual telemetry to the predicted observations
for that failure. Important also is the expert’s ability to rule out a failure on the basis of
evidence to the contrary. The expert may explain, for example, that the possibility of a
drive failure may be ruled out if the motion in the opposite wheel indicates that the wheels
are spinning normally.

4. Encoding Expertise

An appropriate representation must be selected for each of the three types of knowledge
discussed above. Telemetry interpretation knowledge consists of categorical descriptions
of anomalous behaviors, or features. This knowledge is encoded as rules, with each rule
capable of identifying whether a specific feature is present in a telemetry point’s recent

124

value history. The one-to-one correspondence between feature types and rules facilitates
knowledge engineering and rapid prototyping.

Failure mode knowledge characterizes ACS failures as the collection of symptoms which
may appear during that failure. A suitable representation for this type of expertise is a
schema, an object which is composed of slots that specify the attributes of the schema. One
schema completely defines a failure in terms of its symptoms, with each symptom described
in its own slot. This slot description identifies the name of the symptom, the maximum
time it would take for the symptom to appear during the failure, and the likelihood of
the symptom appearing during the failure. Likelihoods are expressed qualitatively with
the symbols ‘H’, ‘M’, and ‘L’ (High, Medium, and Low), ‘A’, and ‘N’. An ‘A’ indicates
that the symptom must always appear, and ‘N’ that the symptom will never appear.
Figure 1 shows a sample failure schema. Because each symptom has attributes which

(defschens pss+.failure
(sysptom ((jump-to-zero psse.current.use) A (08 08 35)))
(sysptos ((steady-decreasss pss-.current.use) R (80 01 38)))
(sysptos ((steady-decresse yrss+.current) R (o8 84 38)))
(syspton ((steady-decrease yrss~.current) N (&8 84 39)))
(sysptom ((graduai-decrease estimsted.sos-y) i (80 06 ”)))
(syaptos ((trensient estimated.stt-p) H (08 88 95)))
(sysptom ((transient estimsted.att-r) H (96 88 30)))
(sysptom ((transient estimated.att-y) H (98 88 85)))
(sysptoa ((unbalanced py+.wheel.speed py-.uheel.speed) N (80 082 30)))
(symptom ((osciliation pre.whee!.drive) L (80 88 99)))
(syaptom ((oscillation pr-.uhee!.drive) L (08 08 90)))

Figure 1: Asample failure definition.

are independent of any one failure, schemas are used for defining symptoms as well. In
this case the symptom is linked with failures by identifying each failure as a possible
cause of the symptom, where appropriate. This schema organization allows rapid access
to the predefined symptom and failure characteristics, and its modularity permits rapid
prototyping as well.

5. Encoding Diagnostic Strategy

The third type of expertise, diagnostic strategy, differs in that it is comprised of procedural
knowledge, whereas the two previous categories of expertise encompass declarative knowl-
edge. This leads to a different implementation: rather than employing rules or schemas,
this knowledge is represented as meta-rules which govern the way in which the declarative
knowledge is applied to the problem-solving task.

The objective of this meta-structure is to implement a reasoning strategy derived from
the techniques employed by human experts. The diagnostic knowledge discussed earlier is
suitably represented using the Set Covering Model [2]. Applying this approach, generating
hypotheses to explain a symptom is simply a matter of locating the symptom’s schema

125

and reading the possible causes for that symptom. Each such possible cause then becomes
a hypothesis. Hypothesis evaluation is accomplished by observing how well a hypothesis
covers the symptom-set, i.e. how many of its symptoms have been detected. Symptoms
vary in how strongly their presence supports a hypothesis, so this factor is incorporated
into the evaluation procedure. In addition, some symptoms are required to support a
hypothesis, and so that symptom’s absence will allow the system to rule out the hypothesis.
Conversely, some symptoms provide contradictory evidence, so that a hypothesis may
be ruled out on the basis of that symptom’s presence. This strategy is an appropriate
representation for the diagnostic expertise discussed above, but requires a mechanism for
handling the multiplicity of hypotheses. Fortunately, such a mechanism is available in this
system.

Hypothetical Reasoning

The use of hypothetical reasoning is of prime importance to the diagnostic capability
of this module. Using this approach, one hypothetical situation (‘viewpoint’) is created
for each possible failure. The viewpoints are distinct from eachother, so each operates
under its own set of assumptions (including of course the assumption about which failure
occurred). When evidence rules out a hypothesis, the associated viewpoint is eliminated.
Thus the use of hypothetical reasoning allows the system to pursue multiple hypotheses
simultaneously. The reasoning within each viewpoint is geared towards supporting the
hypothesis which generated that viewpoint, by setting goals to look for symptoms of the
corresponding failure, and so is called ‘goal-directed reasoning’.

Goal-Directed Reasoning

Hypotheses are generated in a forward-reasoning fashion. This means that the detection
of a symptom triggers the hypothesizing mechanism, because the system has been ‘told’
that if a symptom occurs then it should hypothesize all failures which could cause that
symptom. Once the hypotheses have been generated, however, the reasoning occurs in
reverse. In backward reasoning, the system is told, for example, that if Symptom-A occurs
then the likelihood of Failure-1 is increased. This generates a goal of detecting Symptom-
A. Suppose the symptom knows that if the reaction wheels are unbalanced then conclude
that Symptom-A has occurred. Then a subgoal is generated to detect an unbalanced wheel
pair.

Within each viewpoint, then, unique subgoals are generated. This is a very important
feature because of the computing expense involved in detecting symptoms. The savings is
realized by only looking for symptoms which will help to support or rule out hypotheses.
Savings also is achieved in the case when a hypothesis is ruled out, because all goals
generated to support that hypothesis are eliminated.

6. Implementation

Combining this reasoning strategy, the failure and symptom schemas, and the feature-
identification rules results in a system which emulates the diagnostic performance of a
human expert. The process operates first in a fault detection mode, and then if triggerred,
in a fault isolation mode.

126

Fault Detection

The current practice of fault detection by limit-checking has an inherent limitation,
in that an anomaly may go undetected because no limits are exceeded. Moreover, even
when a telemetry value exceeds its limits, it may not do so immediately upon failure, but
instead may remain within limits for several minutes after the failure occurs. Further,
simulations of ACS failures indicate that transients are reliable fault indicators. The fault
detection mechanism used in this system, therefore, achieves the earliest possible fault
detection, by using any ACS transient to trigger activation of the diagnostic procedures.
This detection is the responsibility of the feature-identifying rule for transients, which
monitors the histories of ACS telemetry points. The detection of a transient triggers the
creation of viewpoints, each of which contains the assumption that one particular failure
has occurred.

Fault Isolation

The meta-rules responsible for viewpoint creation not only hypothesize failures, but also
scan each failure’s list of symptoms, and set as goals the determination of these symptoms’
presence or absence. These goals are satisfied by the feature-identifying rules, each of
which is specific to a particular symptom type. A goal to find an oscillation in a wheel
drive, for example, would activate a rule which ‘knows’ how to identify oscillations. In this
way, only those symptoms relevant to the diagnosis are investigated.

The status of a symptom is initially UNKNOWN. Once it becomes a goal, it is assigned an
expiration time, by adding that symptom’s maximum appearance time to the current time.
If it is observed prior to its expiration, it is assigned a status of KNOWN-PRESENT, otherwise
its status is KNOWN-ABSENT. This information is processed by probability determination
rules, which maintain a current probability for each hypothesized failure. The contribution
a symptom’s presence makes to a failure’s probability depends on the likelihood, expressed
qualitatively with the symbols ‘H’, ‘M’, and ‘L’, of that symptom occuring during the
failure. These values are stored as part of the symptom slots in the failure schema, and
are assigned numerical equivalents for computational purposes. If a symptom is known to
be absent, it contributes a corresponding negative likelihood. Unknown symptoms are not
included in the calculation. Probabilities are kept current by rules which react to a change
in a symptom’s status, by adjusting the probability of any failure related to that symptom
(i.e. any failure identified as a possible cause in the symptom’s schema).

The probability analysis helps the operator to distinguish among failures by providing
a basis for comparing the alternative hypotheses. But more powerful than that is the
system’s capability to rule out failures on the basis of evidence in the telemetry. A failure
may be ruled out by the program under two conditions (the operator may also rule out a
failure). The first occurs when a symptom required to support the hypothesis is absent.
This is detected when a symptom identified in a failure schema as an ‘A’ symptom has a
status of KNOWN-ABSENT. The second condition occurs when a symptom which would not
appear during this failure is observed. This is indicated when a symptom identified in a
failure schema as an ‘N’ symptom has a status of KNOWN-PRESENT. When a failure is ruled

127

out, all goals set to support that hypothesis are removed, and the reason for ruling out
the failure is recorded in its schema.

7. Test Environment

The diagnostic capability of this system was examined within a test environment which
provided simulated spacecraft telemetry and an interactive operator station. The telemetry
was derived from actual satellite telemetry (for ‘normal’ data) and from an ACS simulator
(for failure data). Telemetry processing software generates telemetry frames and sends one
frame to the diagnostic system every two seconds, to create a real-time environment. The
operator station keeps the operator fully informed about detected anomalies and about
the status of each failure being investigated. Three displays are available: a table of all
detected anomalies, a symptom display detailing a selected symptom, and a failure display
providing data about a selected failure.

8. Example

When the ACS Diagnostic System first detects a transient in ACS telemetry, the hy-
pothetical reasoning mechanism creates four possible explanations: a tachometer failure,
a sun sensor failure, a wheel drive failure, and an Attitude Control Electronics (ACE) fail-
ure. The goal-directed reasoning then sets as goals the detection of symptoms appearing
in each of these failures. As a result, the feature-identifiers are activated and telemetry
analysis begins. Figure 2 illustrates the result of the operator selecting a ruled-out failure
for display. A few moments later, the operator selects an observed anomaly, which brings
up the symptom display shown in Figure 3. After about forty seconds, a single failure
remains, but the system continues its analysis until the op;rator decides to accept the
failure. Figure 4 shows the main display after two and a half minutes, identifying the
relevant features found in the telemetry since the failure was first detected.

9. Conclusion

This prototype demonstrates the promise of the approach used because effective rea-
soning was achieved using a straightforward representation and relatively simple heuristics.
Further, because of the way the expertise is segmented, the system can not only be made
to perform better in this domain, but can also be applied to different problem areas.
Installing operational versions of an expert system such as this one thus becomes more
cost-effective, as new diagnostic systems can be generated from existing ones by replacing
a specific knowledge base and leaving the reasoning strategies intact.

Certainly, then, Al-based diagnosis will help to increase mission reliability and reduce
the need for highly-skilled personnel. As this technology evolves, advances in the intelli-
gence of these systems will provide even greater benefit. One way to improve knowledge-
based systems is through the use of learning. Expert systems can learn by modifying their
strategies when such strategies fail to provide acceptable solutions. This approach has been
tested in a satellite diagnosis system |1}, and future work will provide large reductions in
the time and cost involved in knowledge engineering.

128

Satellite Time

/R

| - - r . . -
Attitude Control System Disgnostic Displey 13:19:5¢€
PR+.TACH.FAILURE
Justifscetion: IN A PRe.TACH.FAILURE, THERE MUST ALMAYS BE A SIGHAL-PRESENT Possible Failures Under Consideration
OBSERVED IN THE PRe MHEEL.DRIVE WITHINM ©0:00:085 OF THE FRILURE. SINCE THIS failure likelihood
MRS NOT THE CRSE, WE MAY RULE OUT THE POSSIBILITY OF A PR+ . TACH.FAILURE.
PR+ . DRIVE .FRILURE 9.4862
PSSe FAILURE 6.5485
ACE .FAILURE 9.9497
Current Status: RULED-OUT. Current Likelihood: 0.8000
Symptons for this failure
Type Location Strength State
TRANSIENT PY~.MMEEL .DRIVE H NO.STATUS
TRANSIENT PYe .WMEEL.DRIVE H NO.STATUS Failuras Ruled Out
TRANSIENT PR- MHEEL . DRIVE H NO.STATUS
TRANSIENT PRe .MHEEL .DRIVE H NO.STRTUS
TRANSTENT PY- . MMEEL.SPEED M NG.STATUS PR+ TRCH.FRILURE
TRANSIENT PY+ .WHEEL .SPEED n NO.STATUS
TRANSIENT PR~ .WHEEL . SPEED ™ NO.STATUS
TRANSIENT PR+ . WHEEL .SPEED H NC.STRTUS
TRANSIENT ESTINATED.MON-R] H0.STATUS
TRANSIENT ESTINMARTED.MON-P n NO.STRTUS

FAILURE DISPLAY OPTIONS

RULE-OUT-FAILURE
ACCEPT-FAILURE
RETURN

Figure 2: Failure Display Screen example.

Satellite Time

Disgnostic Displsy 13:20:0C

TRANSIENT PR+.WHEEL.SPEED

Possible Faitlures Under Considerstion

failure likelihood
:
; PSSe . FRILURE 0.5485
Current Ststus: KNOWN-PRESENT. PR+ .DRIVE.FAILURE ©.4862
-
' 100 =) Possible Causes
failure state
vV oued ACE. FAILURE RULED-QUT
M P§Se . FATLURE RACTIVE
) PRe .DRIVE.FRILURE RCTIVE
i PRe .TACH.FAILURE RULED-OUT Faliures Ruled Out
el ACE. FAILURE
SYMPTOM DISPLAY OPTIONS Re - TACH. FRILURE
- RETURN
1
13:10:00 13:19:20 13:20:00
Time

Justification: There vas a detected transient because the tin value, -127.00,
differred fron the nesn by more than 3.8@ standard devietions,

Figure 3: Symptom Display Screen example.

ORIGINAL PAGE IS

OF I
129 POOR QUALITY

ORIGINAL PAGE T8

OF FOOR QUALITY

Satellite Time

Attitude Control System Disgnostic Display 13:22:1€

Observed Telemetry Anomalies Possible Failures Under Consideration
failure likelihood

Chargctorjzation Source Time
PR+ . DRIVE.F .

OFFSET PYe MMEEL.SPEED 13:22:12 DRIVE.FRILURE ©.8991

OFFSET PRe WHEEL .SPEED 13:21:48

OFFSET ESTIMATED.ATT-R 13:21:44

UNBRLANCED PR+ .WHEEL.DRIVE 13:21:42

OFFBET PR-.MMEEL .DRIVE 13:21:42

OFFSET ESTIMATED.ATT-P 13:21:16

OFFSET PRe.WHEEL.DRIVE 13:21:10

RAMP-T0-ZERD PRe .WMEEL .SPEED 13:20:34

REVERSE-DIRECTION PR-.WHEEL.SPEED 13:20:32

TRANSIENT ESTIMATED.MON-R 13:20:32

GRADUAL-INCREASE PR+ .WMEEL.SPEED 13:20:14 Fallures Ruted Out

TRANSIENT PY- . WMEEL .SPEED 13:20:00

TRANSIENT PRe .MHEEL .DRIVE 13:19:54 PSSe . FATLURE

TRANSIENT PR-.MMEEL.DRIVE 13:19:54 ACE . FATLURE

TRANSIENT PR-.WHEEL .6PEED 13:19:54 PRs . TACH. FRILURE

TRANSIENT PYe.MMEEL.DRIVE 13:19:54

TRANSIENT PY+.WHEEL .6PEED 13:19:54

TRANSIENT PY - WMEEL .DRIVE 13:19:54

TRANSIENT ESTIMATED.RTT-R 13:19:50

TRANSIENT ESTIMRTED.RTT-P 13:19:48

TRANSIENT PR+ . WHEEL .SPEED 13:19:48

Figure 4: Main Display Screen minutes into diagnostic.

Another area under investigation is the use of model-based reasoning. An expert system
could predict behavior using models of the satellite and its subsystems, and so could
identify faults by differences observed between actual behavior and behavior predicted by
the model. Isolation of faults is also facilitated by the causal links implicit in these models.
Applying models to diagnostic expert systems is currently under study at GE Astro-Space.
Results from this and other research promise to put more intelligence into Al, so that the
increasing complexity of space systems is paralleled by our improved ability to control and
maintain them, and eventually, by their ability to maintain themselves.

References

Pazzani, Michael J. (1986). Refining the Knowledge Base of a Diagnostic Expert System:
An Application of Failure-Driven Learning. In Proceedings of the Fifth National Conference
on Artificial Intelligence, 1029-1035, AAAI, Philadelphia, PA.

Reggia, James A., D. S. Nau, and P. Y. Wang (1984). Diagnostic Expert Systems Based
on a Set Covering Model. In M. J. Coombs (Ed.), Developments in Ezpert Systems, 35-58.
London: Academic Press.

130

N88-16385

An Expert System for Failure Diagnosis and Recovery
in the TCS of the European Retrievable Carrier
EURECA

A. Kellner, W. Belau, N. Schielow
Space Systems Group
MBB/ERNO
Bremen, West Germany

ABSTRACT

In this paper an expert system for diagnosis and recovery of failures in the freon cooling loop
of the European retrievable experiment carrier EURECA is described.
This system demonstrates the feasibility of a functional scope of expert diagnostic systems
which appears to be essential for practical applications of such systems in space technology.
This scope comprises : early warning and treatment of incomplete information, fault tolerance,
identification of failure superpositions (particularly involving failed sensors), intelligent reaction
to unforeseen events and detailed status display for optimal recovery action.

1. INTRODUCTION

Particularly in view of the implementation of expert systems for failure diagnosis and recovery
on autonomous spacecraft, but also with respect to their application as ground-based consultant
systems, a certain enhanced functionality of such systems appears to be essential, covering in
particular early warning and treatment of incomplete information, failure superposition, intelli-
gent reaction to unforeseen events, tolerance to isolated faults in the knowledge base and
detailed status display for optimal recovery action.

in this paper an expert system is described which, in its first development phase, has been
used to implement and assess the technology required for the realization of these requirements
for the diagnostic process. As such it could initially be used as a ground-based operator’s consulting
system, serving at the same time as test-bed for a further refinement of this technology for
subsequent on-board applications.

2. THE COOLING LOOP OF EURECA

As system to be monitored the cooling loop of EURECA was chosen with the aim of a later
expansion of the knowledge base to also include the thermal control unit, thus providing the
complete TCS as application domain in the final stage.

The cooling loop of EURECA is depicted in Figure 2 showing the pump package (FPP) con-
sisting of two redundant pumps of which one drives the cooling medium, freon, through the
experiment line (upper branch) where the freon cools the experiments, then through the two
radiators (Rad +x and Rad —x) where the heat taken up by the freon is dissipated and finally
through the equipment line (lower branch) where equipment such as batteries and power distri-
bution units are kept approximately at room temperature.

The fine tuning of the freon temperature is achieved by small adaptive heaters positioned
along the experiment and equipment line as well as on the radiators.

The sensors are shown as icons in Figure 2 and measure pump inlet pressure (Pin), pump
outlet pressure (Poyt), pump inlet temperature (Tip), radiator inlet temperature (Ts,), radiator
outlet temperature (Ts, ,), freon quantity in the accumulator (Acc. Q.) and the electrical pump
current {Ip). Moreover,’a delta pressure switch (dP) gives a signal if the pump pressure head has

[
(08
3

broken down. (It should be mentioned that the question whether all these sensors will be
available for EURECA is still under discussion. However, as the initial development stage of the
expert system only aims at a technology demonstration, the exact number and type of sensors
used is not crucial).

In addition to these direct measurements, the total power consumed by the adaptive heaters
for the experiment line (Pwr Ex), the radiators (Pwr +x and —x) and the equipment (Pwr Eq)is
also used, since changes in this power can serve as indirect indications of changes in flow, thus
substituting to a certain extent the fact that a direct flow measurement will not be available for
the EURECA cooling loop.

3. KNOWLEDGE REPRESENTATION
EUREX D has a rule-based knowledge representation which is characterized by :

o Global monitoring :
Diagnosis is not only based on single sensor monitoring but on a global assessment of the
concurrent readings of all sensors, identifying characteristic data patterns and relations (such
as temperature gradients along the different sections of the cooling loop) thus providing a
broad basis for the diagnostic process.

o Indirect monitoring :
Apart from a direct interpretation of sensor signals such as interpreting the activation of the
delta pressure switch as pump performance degradation, extensive use is made of indirect
monitoring such as taking a flow reduction as additional evidence for the pump performance
degradation, or using temperature readings for a measurement of flow as indicated above, etc.

o Redundant monitoring :
In the reasoning process AL L known evidence for a given anomaly is taken into account thus
allowing for incomplete or even partially erroneous information or knowledge to be processed
without grave consequences since the system’s dependency on individual bits of information
or knowledge is greatly reduced.

o Multi-valued logic :
Taking all known evidence into account implies the use of non-conclusive evidence :
For instance, the flow reduction mentioned above as being indicative of a pump performance
degradation could also indicate a flow blockage or even a superposition of both anomolies.
Therefore rules generally hold only partially, which is represented by implication strengths o
taking values between 0 and 1, assigned to the rules.

o Causal connectivity :
Although EUREX D does not reason “from first principles’ but relies on knowlege based on
engineering experience and heuristics, it is able to identify causal connections between states
(e.g. a flow blockage being the cause of a flow reduction) for greater transparency and com-
pleteness in the description of the system’s state. The knowledge necessary to identify these
causal connections is provided by pointers assigned to the states.

4. INFERENCE MECHANISM

The various steps in the knowledge-based data processing, which are aiso reflected in the
system’s architecture shown in Figure 1, are given by :

o Data processing :

i.e. the computation of temperature gradients along the various sections of the cooling loop,
pressure differences etc.

132

o Data classification :
i.e. local classification of the data in relation to the nominal interval generating "observations’’

such as “temperature high’’, ""pressure normal’’ etc.

o Sensor state assessment :
Dedicated rules check the plausibility of sensor readings on the basis of these observations

and assign belief values to the sensors : 1 for normal operation, O for degraded sensors.

o System state assessment :
For each system state, all rules pointing to this state are ""tickled’’ and the implication streng-
ths of fired rules are collected by an accumulation function leading to an integrated certainty
factor. In the case of several inference steps (where system states serve as evidence for other
system states) composite implication strengths are computed by propagation functions. In
particular sensor belief values of O simply cause any inference based on this sensor to drop
out of the reasoning process.

o State evaluation :
States with certainty factor 1 are displayed as diagnoses. In case such cannot be found,
several states with the highest certainty factors are presented as possible but not conclusive
diagnosis. Diagnosed states are displayed in columns, the states given in a certain column
always being the cause of the states in the adjacent columns to the left, thus generating a
detailed status display which is not just based on the primary cause of an anomaly.

o Recovery actions :

Depending on the diagnosis, appropriate recovery actions are selected. When the diagnosis
is not conclusive, i.e. when it consists of several states with certainty factors less than one,
the suggestions for recovery actions obviously also cannot be conclusive but are qualified by
priority factors which are functions of the certainty factors and possible additional informa-
tion (such as the rule to always react to the most hazardous situation first, even if it has a
comparatively low certainty factor). However, this identification of recovery actions has not
yet been implemented in EUREX D.

5. IMPLEMENTATION

EUREX D is being developed on the LISP-based development environment KEE and runs
on SYMBOLICS machines.

Sensor-dedicated demons are responsible for the data classification described above. States
are objects (units in KEE terminology) automatically collecting the evidence pointing to the
states and computing the integrated certainty factors.

Rules are grouped into classes corresponding to their firing priority in the inference process.
Based on KEE’s facilities the man-machine interface is strongly supported graphically, facilita-
ting knowledge acquisition and explanation of the reasoning processes.

In particular, the sensor readings are shown as bar graphs and their classification as shaded/
non-shaded areas, responding actively to the input data. Conversely, the bar graphs can be
mouse-manipulated to preset the sensor readings for an initial nominal and a final anomal
state for an in-built test simulator. This simulator generates, at fixed time intervals At, the
sensor readings of the intermediate states which develop as the anomaly evolves from the
initial nominal state to the preset end-state.

At each At EUREX D then performs its diagnosis on the sensor readings of these intermediate
states.

133

6. FUNCTIONAL SCOPE

EUREX D displays the following functional scope corresponding to the requirements listed
in the introduction :

o Early warning and treatment of incomplete information :

Due to this fact that the reasoning mechanism is based on multi-valued logic and can process
non-conclusive evidence, the system does not depend on the sensor data patterns character-
istic of fully evolved anomalies for its diagnosis, but is able to process first symptoms of
developing failures (i.e. incomplete information), presenting assumptions of several possible
failures (weighted with certainty factoss less than 1) for early warning and preventive action.
An example of an assessment of the evolving symptoms of a flow blockage is given in Figures
2-3. A similar treatment applies when the incompleteness of information is due to other
reasons, such as reduced sensor availability etc.

o Failure superposition :
Obviously a premeditation of all failure superpositons for a diagnostic system is impossible,
and, like most other diagnostic systems, EUREX D is designed for the diagnosis of single
failures only. However, it does display the ability to treat failure superpositions to a fair
extent :
Degraded sensors are detected by dedicated sensor rules and taken out of the diagnostic
process as described in Chapter 4. The diagnosis of simultaneously occuring system anomalies
then proceeds on the basis of incomplete information as shown above. Thus concurrent
sensor failures and system anomalies can be discerned.
Concurrent system anomalies can obviously be detected if they do not have opposing effects
on the same sensors. Otherwise the system will again offer several assumptions with certainty
factors less than 1. For example the superposition of a flow blockage and a leak leads to the
assumption of pump performance degradation (c.f. = 0.5), leakage (c.f. = 0.7) and flow
blockage (c.f. = 0.5).

o Treatment of unforeseen events :
Processing of non-conclusive evidence in EUREX D also facilitates intelligent reaction to non-
premeditated events. On the basis of the subset of recognized features, known situations are
enumerated which have the greatest similarity to the unforeseen event.
At the same time, the fact that these are just assumptions is signalled by certainty factors less
than 1.

o Tolerance to isolated faults in the knowledge-base :
Regardless of whether such faults are due to erroneous coding or some irradiation of com-
puter memory in case of on-board expert systems, it is imperative that an expert system does
not react catastrophically in case of such error.
Due to the excessive knowledge redundancy (see chapter 3) this tolerance is indeed given to a
great extent in EUREX D, where most isolated faults are ""drowned" in the “‘majority vote”’
of the remaining evidence.

o Detailed status display :
The inclusion of states causally connected to primary failure states for greater detail of status
display has already been described in Chapters 3 and 4.

7. CONCLUSIONS

An expert system for the failure diagnosis of the cooling loop of EURECA has been described
which displays a couple of features which appear to be essential for practical applications of
such expert systems in space technology, the main aspects of the underlying methodology
being given by knowledge redundancy and multi-valued logic.

It should be noted, however, that the management of uncertainty involved still poses some
problems in the case of very large knowlege-bases and future work will have to concentrate on
this aspect.

134

[Simulator-}—-r Raw Data
1}

r Preprocessing J
[Classification |
| ®ensor statfa assessment |e—
| Plant state‘assessment f—

| State evaluation |

el SHLAL PAGE TS

CF. FOOR QUALITXY

I

[Event-driven display |
]

[Explanation facility |e—

Figure 1 : Components of EUREX D

EURECA - ICS NOS, 22-SEP-198¢
inltialize
! I ! l Setup
NORMAL NORMAL | Start |
Stap
[Peuca [Pouth |
Calibrats
WK |

normar| [woxmaL
P rino | [Expata |
* «

1 " .
I R Elapsed Time {sec)
NORMAL NORMAL & 4 n

oK

‘ “
z l b l 1 1
R 3
NORMAL NORMAL NORMAL NOAMAL NORMAL

Diagnostics Hindow

[PUMP.PER7ORMANCE.DEGRADATION (9.3 [PUMF.BEARING.DEGRADATION (6.4}

FLOW.REDUCTION (1.4)]

[CHECK.VALVE.LEAKAGE.OF STANDBY .PUMP (8.4}
Senser Failure: NONE
95722/87 14:33:37 LISP-RACKIN

Figure 2 : Display of cooling loop and diagnostic window showing an assessment of
first symptoms of a flow blockage

Diagnostics Window

[FLOW.REDUCTION (1.0)] [FLOW.BLOCKAGE (1.9)]

Senser Failure: NONE

Figure 3 : Diagnosis of fully evoived flow blockage

135

N88-16386
Task Path Planning, Scheduling, and Learning
for Free-Ranging Robot Systems

G. Steve Wakefield
Research Assistant, Johnson Research Center
Research Institute, Room A-4A
University of Alabama in Huntsville
Huntsville, AL 35899
(205) 895-6217

ABSTRACT

The development of robotics applications for space
operations is often restricted by the limited movement available
to physically guided robots. Free-ranging robots can offer
greater flexibility than physically guided robots in these
applications. This paper presents an object oriented approach to
path planning and task scheduling for free-ranging robots which
allows the dynamic determination of paths based on the current
environment. The system also provides task "learning" for
repetitive jobs. This approach provides a basis for the design of
free-ranging robot systems which are adaptable to various
environments and tasks.

INTRODUCTION

The development of robotics applications for space
operations is often restricted by the limited movement available
to physically guided robots. Free-ranging robots can offer
greater flexibility than physically guided robots in these
applications. However, the use of free-ranging robots introduces
two major complexities: path planning and task scheduling [5].
This paper presents an approach to path planning and task
scheduling for free-ranging robots which allows the dynamic
determination of paths based on the current environment, and
provides task "learning" for repetitive jobs. This approach
provides a basis for the design of free-ranging robot systems
which are adaptable to various environments and tasks.

The system described is being developed for applications
which are best accomplished through the use of free ranging
robots. Some examples of such applications are operations in the
various modules of the space station, work in hazardous
environments, and industrial warehouse operations. Several goals
are established for this research. The system should provide
for:

- the ability for the robot to operate in different
environments, dependent only upon the existing knowledge
of each environment;

- the ability to execute requested tasks based on the
knowledge of spare parts’, tools’, and work stations’
locations;

- the ability to operate in a multi-robot environment;
- the requirement of a task definition only once; and,
- the use of previously defined paths whenever possible.

The system depends upon the use of a central control computer
which contains knowledge of each operating environment, and
controls all modifications to that environment. -

CONTROLLED OPERATING ENVIRONMENT

The system is based on the concept that all dynamics in an
environment are controlled by a central computer which uses a
combination of artificial intelligence techniques and classical
algorithms. In the current project, the environment is defined
initially by the user; subsequent changes to the environment are
performed by, and "remembered" by, the centrally controlled
robots within the environment. All tasks and operations
(including inputs to and outputs from the environment) are
scheduled and planned before gxecution. The central computer
defines the shortest path between the starting point and ending
point of a task, monitors the location and use of all items
required to complete a task, and coordinates the task with other
robots within the environment.

The controlled environment also contains storage sites (for
inventory, tools, spare parts, etc.), work stations (where the
task is actually performed), and home bases (where the robot are
be recharged when as necessary). The central computer maintains
all necessary information and knowledge on storage sites, work
stations and home bases. Such information includes location
parameters, content status, idle/busy status, etc., and
appropriate updates are made based on the dynamics of the
environment.

The control system described in the paper has been developed
on a Symbolics 3620 AI work station. The programs are written in
Common Lisp but also utilize the Windows and Flavors packages
available on the Symbolics, which provide an object oriented
programming base. Each work station, storage site, robot, path,
and task 1is represented as an object, with particular
characteristics associated with each. In order to monitor robot

138

operations within the environment, the current program
graphically simulates the results of the path planning and
scheduling routines performed when a task request is processed.

PATH PLANNING AND LEARNING

Several researchers have investigated path planning in
various environments. Trivedi, Gonzalez, and Abidi worked on
robotics control for hazardous environments [6]. Path planning
for a manipulated arm robot has been researched by Jentsch [4].
Taghaboni and Tanchoco have investigated path planning of free
ranging robots [5]. Their work is based on selecting the best
path from known paths depending on the path ~-roviding the
shortest time to completion [5]. The system develuped by Kaiser
and Hawkins deals with the control of free-flying robots, and
selects a path based on the cost function [3]. Weisbin has
described work in path planning, as well as learning concepts,
for autonomous robots [7]. The system described here draws from
the above mentioned research, but takes a somewhat different
approach. Not only is collision avoidance used in path planning,
but the knowledge of item locations allows the robot to choose
where it needs to go to obtain tools and spare parts, and where
the work is to be performed. Knowing this, the most efficient
path for completing an entire task can be determined.

Tasks are given to the AI control center by the user. The
user specified task information is stored in a relational
data/knowledge-base. Tasks, therefore, need to be defined only
once. Thereafter, user specification of the task name will allow
the control system to access information and knowledge required
for task completion. As more and more tasks are defined, the
power of the system increases and the amount of task information
required from the user decreases.

Once a task is defined, the central computer searches the
data/knowledge bases for the required item information. The
movements of the robot to acquire the items and perform the
desired operations are then planned, including collision
avoidance of static objects and other moving robots. The robot
movement is scheduled via a recursive routine which locates any
obstructions in the direct path between two points and determines
the shortest path around those obstructions. It then checks for
obstructions in that path, until a clear path between the two

locations is found. Once the task has been planned and
scheduled, the control sequence is sent to the robot for task
performance. The control computer can also be used to define

actions to be taken by the robot upon task completion.

When a path is determined, any other tasks requiring
movement between the same points can use the previously
determined path, without requiring recalculation by the recursive
functions. However, if the environment has changed (objects

139

added or moved) the recursive path finding routine is called and
the new path subsequently stored for future use. Even when path
modifications are made for a given task, the items and operations
required to complete that task are "remembered" by the control
computer from the initial definition of the task.

The pre-performance planning routine also allows for
collision avoidance between robots in a multiple robot
environment. Since all tasks and paths are determined prior to
execution, the central computer knows where each robot is going
to be at a given time and can use this information to determine
the path for a new task. The path may include avoiding other
robots in the environment by altering the path or simply waiting
at a given location for another robot to pass.

LIMITATIONS AND ADVANTAGES

Among the advantages of this approach over other approaches
being investigated are the increased flexibility of the system

and the reduced overall CPU time. The increased flexibility is
provided by: (1) shortest path determinations based on the
current environment, (2) multi-robot operations within the

environment, and (3) path modifications when required by the
dynamics within the environment. The reduced CPU time results
from not only the removal of continuous collision avoidance
requirements but also the task and path "learning" capabilities
of the control computer.

The major future enhancements to this approach should
include: (1) developing the capability for a robot to assist in
defining the initial environment via sensory enhancements; (2)
providing the robot with the ability to search for a clear path
through or around closely grouped objects; and (3) integrating
classical algorithms for the performance of routine tasks once a
robot has been placed at a work station. Each of these areas are
being examined by current research and development efforts

[(11[2]1(6])-

CONCLUSIONS

This paper presents an alternative solution to the problems
of path planning and task scheduling for free-ranging robots.
The approach is not limited to pre-defined paths and intersection
nodes, but rather defines each individual path based on the
current environment. The use of artificial intelligence
techniques allows the control computer to monitor and modify the
dynamic environment and to plan and schedule tasks accordingly.
Complete development of this approach will allow the continued
advancement of applications for free-ranging robots.

140

REFERENCES

1. Hopkins, S.H., and P.J. Drazan, "Semiautonomous Systems in
Automatic Assembly," I1EEE Proceedings, vol. 132, Part D, No. 4,
July 1985, pp. 174-177

2. Huang, C.L., and J.T. Tou, "Automatic Generation of 3-D
Pictorial Drawing from Intensity Image," Proceedingas of SPIE

conference: Applications of Artificial Intelligence V, May 1987,
p. 502

3. Kaiser, Donald Leo, and P.J. Hawkins, "Motion Planning for a
Free-Flying Robot," Proceedings of NASA Conference on Artificial
Intelligence for Space Applications, November 1986, pp. 247-255

4. Jentsch, Winfried, "Off-line Planning of Collision-free
Trajectories and Ob)ect Grasping for Manipulating Robots,"
Proceedings of the Third Annual Conference on Artificial

and Information-Control Systems of Robots, June
1874, pp. 193-196

5. Taghaboni, F. and J.M.A. Tanchoco, "Dynamic Scheduling and
Control of Free-Ranging Automated Guided Vehicle Systems,"
Proceedings of the 1986 Fall Industrijal Engineering Conference,
December 1986, pp. 127-129

6. Trivedi, M.M., R.C. Gonzalez, and M.A. Abidi, "Developing
Sensor-driven Robots for Hazardous Environments," Proceedings of

SPIE Conference: Applications of Artificial Intelligence V, Vol.
786 May 1987, pp. 185-188

7. Weisbin, Charles R., "Intelligent-Machine Research at
CESAR," Al Magazine, Vol. 8, No. 1, Spring 1987, pp. 62-74

141

N88-16387

DEVELOPMENT OF A TASK-LEVEL ROBOT PROGRAMMING AND SIMULATION SYSTEM*

H. Liu, K. Kawamura, S. Narayanan**, G. Zhang, H. Franke & M. Ozkan
Center for Intelligent Systems, Vanderbilt University
Nashville, Tennessee 37235, USA

H. Arima
Process Control Equipments Design Dept.
Tokico, Ltd., Kawasaki, JAPAN

ABSTRACT

This paper presents an ongoing project in developing a Task-Level Robot
Programming and Simulation System (TARPS). The objective of this research is
to design a generic TARPS that can be used for a variety of applications. Many
robotic applications require off-line programming, and a TARPS is very useful
in such cases. Task-level programming is object-centered in which user
specifies tasks to be performed instead of robot paths; graphics simulation
provides greater flexibility and also avoids costly machine setup and possible
damage. A TARPS has three major modules: world model, task planner and task
simulator. The system architecture, design issues and some preliminary results
are given in this paper.

I. INTRODUCTION

Robot programming systems can be divided into three broad categories:
guiding systems in which the user leads a robot through the motion to be
performed, robot-level programming systems in which the user writes a computer
program specifying motion and sensing, and task-level programming systems in
which the user specifies operations by their desired effects on objects [8].
Guiding systems are primitive, e.g., there are no loops, conditionals, or
sensors, but are easy to use and can be implemented without a general-purpose
computer. Robot-level programming systems have the capabilities lacked by
guiding systems; however, the user must be familiar with both computer
programming and robot manipulation. Task-level programming is an attempt to
shift the burden of detailed robot programming from the user to the computer
where only goals or tasks need to be specified by the user. Recently, more and
more robotic applications require robot programming to be done off-line. This
is often complicated by frequent task change and critical timing requirement.
A Task-Level Robot Programming and Simulation System (TARPS) can be very
useful in such cases since task-level progrmming is much more efficient than
robot-level programming and guiding, and through computer simulation extensive
experiments and analyses can be performed without the high cost of machine
setup and risk of damage.

The system architecture of the TARPS being developed consists of three
major modules: world model, task planner and task simulator as shown in Fig.
1. Based on the world model, the task planner translates object-centered task
specifications to appropriate robot motion sequences. The robot motion se-

* This work was supported in part by Tokico, Ltd.

** Mr. Narayanan is now with Dept. of Elec. & Comp. Engr., Univ. of Calif.,
Davis, CA 95616.

143
FRECED T FAOE RILANCNDY &

FnZCEDING PAGE BLANK NOT FILMED

ok

LA

quences and the world model can be simulated on the graphics terminal. The
high-level task planning part is implemented in LISP, object model in FLAVORS,
and robot motion synthesis in FORTRAN. Certain important issues such as object
representation, collision avoidance and trajectory planning are also ad-
dressed.

I1. WORLD MODEL

Task-level programming and simulation cannot be achieved without a world
model. This world model should include a robot model, physical object model
and environment model. The robot is modeled as a mechanical linkage system
with various joint parameters and constraints. These parameters and spatial
geometry of the manipulator are needed to compute and simulate robot motion.
3-D object representation has been a major research topic in computer vision,
CAD/CAM and computer graphics. A 3-D object can be represented by one of the
three general classes: (1) surface or boundary, (2) sweep and (3) volume. We
adopted a surface-based representation scheme based on the evaluation in (4]
and the following reasons:

1) We plan to derive the object model from the CAD model, and the sweep
representation has been used only to a very limited extent in CAD.

2) Surfaces can be recognized by vision or range Sensors and so any repre-
sentation scheme utilizing surface descriptions can be easily integrated into
a sensor-based robot planning system.

Any 3-D planar object can be represented by a graph where every vertex,
edge and surface of the object corresponds to a node in the graph, and the
arcs of the graph are the connected to relations. Fach node can be implemented
as a computational object with certain slots. For example, a vertex node may
have slots for vertex_ id, X, ¥, and z coordinates, and related edges. Data
from other nodes can be obtained by message sending. At present, the object
model is entered through a menu-driven interface; simple object models such as
rectangular blocks, cylinder, cone and sphere can be entered through the menu.
Once simple object models are defined, composite objects can be constructed in
a way similar to that of Constructive Solid Geometry (CSG) representation.
Algorithms for constructing object model from CAD data and B-splines repre-
sentation are under development. The environment model has a world frame and
coordinate frames for objects and robots. Semantic network and homogeneous
transform are used to express their positions with respect to one another.

A. Surface-Based Object Representation

The surface representation of objects makes use of "faces." Any "face" of
the object can be considered as a subset of the enclosing surface or boundary
of the object. Conversely, the union of all possible "faces" of an object
constitutes the boundary of that object [11]. For 3-D planar object the repre-
sentation primitives are boundary, faces, edges and vertices. The primitive of
a "physical object" is represented as a “computational object” [12]. A com-
putational object is typically characterized by a set of “instance-variables"
whose values are used to determine the current state of the object and its
relation with other objects. Furthermore, there are procedures which can be
used to determine the attributes of other objects and to make decisions to
schedule operations concerning that object. Listed below are some of the

144

information required to characterize the face. Each face of the object s
represented using the same scheme as is used for other primitives.

face id: Used for the purposes of identification of a face.

adjacent_to: Has a list of face id's as its value.

normal_vector: Equation of the vector normal to the face. This value can be
computed from the face vertex positions of a planar surface.
For a quadric surface, however, we require information about
the surface shape.

related edges: A list of edge_id's that belong to the face.

B. Conversion from CAD Data

The modelling scheme described earlier requires a lot of information to
represent the object. There is an increasing need to obtain such information
from a CAD data base of the task environment [4]. For example, the dimensions
of a rectangular block can be obtained from a CAD model of the block. From
these dimensions, it is possible to select a reference frame for the block and
then compute the relevant information such as: 1) Location of vertices with
respect to the assigned object reference frame; 2) Tlabelling of edges by
applying a rule that any two vertices constitute an edge; 3) labelling of
faces by computing those sequences of edges which form 1loops, i.e., staring
from any vertex, find those edges which, when traversed, lead us back to the
initial vertex without going through any vertex twice; and 4) computation of
the face normal vector from the equation formed by the plane described by the
face's vertices.

ITI. TASK PLANNING

The role of the task planner is to take task-level specifications from
the user and generate manipulator-level specifications which can be used for
simulation or sent to the robot controller. Task specifications may appear in
various forms ranging from a pair of initial and goal states to an explicit
sequence of subtasks. If only a goal is given, the task planner would need
substantial domain knowledge in order to generate sequence of subtasks. An
intermediate step might be to let task planner check task specifications and
provide recommendations. Task planning can be carried out in two steps: task
synthesis and robot motion synthesis. At the top-level 1is a task manager
responsible for the selection and coordination of task skeletons, procedures
to perform specific subtasks. It 1is also plausible to use a robot-level
programming language between task synthesis and robot motion synthesis, i.e.,
task specification (high level) --> robot program (medium 1level) --> robot
motion (low level). The robot-level programming should be accessible by the
user.

Robot motion synthesis depends Tlargely on type of applications. For
example, assembly operations require compliant and guarded motion, while arc
welding and spray painting operations require accurate motion and trajectory
control. Object and world model is indispensable in robot motion synthesis. We
attach homogeneous transform to symbolic spatial relation to express quantita-
tive relation among objects and robot. The object and world model changes

145

dynamically as task goes on. An efficient and elegant way to update the model
is by message sending in object-oriented paradigm. Collision avoidance 1is
another important problem in robot motion planning which will be discussed in
later sections.

We use a typical spray-painting robot to jllustrate task synthesis and
robot motion synthesis. Assume that five faces of a large rectangular block
are to be painted except the face attached to a fixture which rotates the
block.

A. VUser Interface

The user interface elicits information that is required from the user in
order to accomplish the task. Typically, TARPS requires to know about the
environment and objects. The user supplies data to completely define the
object size, shape and location through the object representation primitives.
This helps TARPS to configure the object and environment model. Besides infor-
mation required to define the environment, the user also supplies some
parameters that are required for the performance, monitoring and analysis of
the task.

B. Task Synthesis

The task synthesizer acts as a scheduler and utilizes the relevant plan
information for the performance of the task. The input to the task synthesizer
comprises user-specified parameters defining the environment and the task. A
given task, e.g., paint the block, is decomposed into a sequence of subtasks
using heuristic planning rules, which are primarily concerned with the selec-
tion of task parameters to obtain a satisfactory task performance. One such
heuristic rule is that "adjacent faces of an object are painted in sequence".
The selection of adjacent faces, however, further depends on the constraints
on the mobility of the work-piece and the reachability or work-envelope of the
robot. After decomposition, each subtask is considered independently and
manipulator paths are generated for each subtask in accordance with subtask
constraints. An example of such a plan decomposition sequence for painting the
block is: (1) paint face 1, (2) rotate block (+90), (3) paint face 2, (4)
rotate block (+90), T5) paint face 3, (6) rotate block (+90), (7) paint
face 4, (8) paint face_5.

C. PATH GENERATION

Generally speaking, for painting robot there are two types of motion:
free motion and paint motion. Free motion comprises those motions between home
position and initial positions of subtasks. Collision avoidance is usually the
only concern in free motion. Paint motion, on the other hand, requires more
accurate trajectory control. For example, the spray gun must always be perpen-
dicular to the surface to be painted, and the distance between spray gun and
the surface must remain constant. Once task parameters such as initial con-
figuration, etc. have been determined, the task skeletons are responsible for
calculating the path of the manipulator that can satisfactorily accomplish the
task.

146

1. Motion Planning

Once the manipulator is at the initial position it is ready to start
performance of the task. The path followed by the end-effector depends on the
"paint-patterns." A paint pattern is the path that a spray gun attached to the
end-effecter moves to deposit paint on the work-piece. Such a pattern depends
on various parameters like shape of the work-piece, material properties of the
paint, etc. Until now, generation of a painting pattern has been mostly ex-
perimental by using a guiding system. Such a trial and error approach is often
time consuming and inefficient. We felt it necessary to develop an algorithm
for the painting process. Algorithms for painting planar surface have been
developed; those for painting curved surfaces can use polyhedral approximation
and are under development.

Once a particular face of the work-piece has been painted, there is
relative motion between the robot and the work-piece in order to position the
manipulator at a suitable initial position to paint the next face as scheduled
by the task planner. Fig. 2 shows the robot path from home position to the
initial position for painting face l. The inter-subtask motion has to take
into account the following two factors: 1) Avoidance of collision during the
manipulator and/or work-piece motion and 2) movement of the work-piece between
subtasks to provide an easy access for the manipulator to paint the relevant
face subject to the constraints on the freedom of work-piece to move in the
workplace. Inverse kinemetics and collision detection are computed in this
phase.,

2. Collision Avoidance

There have been many studies relevant to the planning of a collision-free
path. Two approaches have been used most often. One approach is "hypothesize-
and-test" method which focused on algorithms for detecting collision among
solids. Another approach consists of explicitly representing the set of those
robot configurations which are collision-free [6],[7]. However, an efficient
algorithm for computing a collision-free path for general robots is still not
available.

We employ two strategies to plan collision-free paths in TARPS, The first
one is using an heuristic method to plan a collision-free path which is
similar to the second approach mentioned above. The other uses a collision
detector to detect a possible collision during simulation. Whether the colli-
sion detector need to be executed can be determined by the high level task
manager or by the wuser. Since two different motions are used here, we
developed different algorithms for free and paint motion. In free motion we
need to make sure that the end effector is in the safe space. In paint motion
we consider other links since end effector is always some distance away from
the workpiece. In inverse kinemetics computation, usually muitiple solutions
are obtainable. In such case we can select a collision-free solution. If none
of them is collision free, then a different path must be generated.

IV, SIMULATION AND GRAPHICS
To evaluate and ensure good performance of the robot task planning we

need to have the capability of analyzing the kinematics and dynamics of the
robot manipulator. This also calls for the capability of presenting actual

147

ORIGINAL PAGE IS
OE POOR QUALITY

World Mode!
—— —
' Visual I—- Object |4 Environment pJ Robot e Design
Sensor Model Model Model Data Base
- User
Interface Tesk Manager
Task Skeletons
Free Paint Planar
Motion Motion Surface
Algorithm
Graphics Simulator Data
Display (ADAMS) File

Figure 1: TARPS system architecture

Figure 2: The complete (collision-free) motion sequence
from x-direction to y-direction.

148

robot and workpiece motion graphically. The software used for this purpose
must be extensible to encompass special requirements, e.g., nonlinear force
and torque calculations, in the form of user-defined functions or subroutines.
The Automatic Dynamic Analyses of Mechanical Systems (ADAMS) was selected as
our simulation tool which provides us with such facilities. The actual equa-
tions governing the manipulator kinematics and dynamics can be programmed in
ADAMS which can then be interfaced and run as a process when required by the
LISP-based planner. The results of the simulation can be analyzed by the user
or planning program to decide on the actions to take.

V. CONCLUSION

In this paper we have presented a prototype of Task-Level Robot Program-
ming and Simulation System. The key issues addressed here are world modeling,
object representation and collision-free task planning. We adopted a surface-
based object representation for the reasons that it is ideal for sensor-based
robot control and is easily accessible from CAD database. Task planning is
based on a hierarchical approach while collision problem is taken into con-
sideration during path synthesis. When sensor systems are incorporated, parts
localization techniques can be applied to obtain actual position and orienta-
tion of the objects. It is our belief that task-level programming will be
useful 1in a wide variety of applications, and we are also investigating the
parallel hardware architecture for task-level systems.

VII. REFERENCES

1, ADAMS User'§_Manual, Mechanical Dynamics, Inc., 1985,

2. D.A. Ballard & C.M. Brown, Computer Vision, Prentice-Hall, Inc., New
Jersey, 1982.

3. P.J. Besl & R.C. Jain, "Three-Dimensional Object Recognition," ACM Com-
puting Surveys, 17(1):75-145, March, 1985 -

4, B. Bhanu & C-C. Ho, "CAD-Based 3D Object Representation for Robot
Vision," Computer, 20(8): 19-35, August 1987.

5. M. Brady, J.M. Hollerbach, T.L. Johnson, T. Lozano-Perez & M.T. Mason,
(Eds.), Robot Motion: Planning and Control, The MIT Press, Cambridge,
Mass., 1983.

6. R.A. Brooks, "Solving the Find-Path Problem by Good Representation of
Free Space," Proc. 2nd AAAI Conf., Carnegie-Mellon, August 1982.

7. T. Lozano-Perez, "Automatic Planning of Manipulator Transfer Movements,"
IEEE Trans. on System, Man, Cybernetics, SMC-11, 10, 1981.

8. T. Lozano-Perez, "Robot Programming," Proc. IEEE, 71(7): 821-841, July
1983.

9. R.P. Paul, "Manipulator Cartesian Path Control," IEEE Trans. on System,
Man, and Cybernetics, SMC-9, 11, 1979,

10. R.P. Paul, Robot Manipulators, Mathematics, Programming, and Control, MIT
Press, 1981.

11. A.A.G. Requicha, "Representations for Rigid Solids: Theory, Methods, and
Systems," ACM Computing Surveys, 12(4):437-467, Dec. 1980.

12, D. Weinreb & D. Moon, LISP Machine Manual, Symbolics, Inc., 1981.

149

Ng8-16388

GOAL DRIVEN KINEMATIC SIMULATION OF FLEXIBLE ARM ROBOT
FOR SPACE STATION MISSIONS*

P. Janssen
A. Choudry
Center for Applied Optics
University of Alabama in Huntsville
Huntsville, AL 35899

ABSTRACT

Flexible arms offer a great degree of flexibility
in maneuvering in space environment. We have studied
the problem a space station based Flexible Arm Robot
to transport an astronaut for EVA (extra vehicular
activity). In particular we developed the inverse
kinematic solutions of the multilink structure. our
technique is goal-driven and can support decision
making for configuration selection as required for
stability and obstacle avoidance. Details of this
technique and results will be presented.

*Work supported in part by NASA Grant #NAGW-847 and
State of Alabama Research Council.

-, Z5EDWING PAGE BLANK NOT FULMED

151

N88-16389

HEURISTIC SEARCH IN ROBOT CONFIGURATION SPACE
USING VARIABLE METRIC

Ben J. H. Verwver
Faculty of Applied Physics
Delft University of Technology
The Netherlands

ABSTRACT
Intelligent path planning methods are of utmost
importance for robots operating in space. In
unexpected situations, reliable solutions must be
generated. Trial and error may not suffice, nor does
active human involvement. An autonomous robot path
planning method is not yet availabe. Obstacles are,

if at all, detected but not avoided.

We propose a method to generate obstacle free
trajectories for both mobile robots and linked robots.
The approach generates shortest paths in a
configuration space. The metric in the configuration
space can be adjusted to obtain a tradeoff between
safety and velocity Dby imposing extra costs (=
distance) on paths near obstacles.

A configuration space is a space in which each
point corresponds to a unique position and shape of

the robot in real space. The number of dimensions of
the configuration space equals the degrees of freedom
of the robot. E.g., a mobile vacuum cleaner has 3

degrees of freedom (2 translational and 1 rotational),
an industrial manipulator with 6 rotational joints has
6 degrees of freedom. A survey on configuration
spaces was presented by Lozano-Perez in [1]. A point
in configuration space may be allowed or forbidden;
forbidden if the robot in real space would collide
with an obstacle or with itself, else allowed.

In (2] it was suggested to gquantize the
configuration space and to obtain a shortest path
using a constrained distance transformation. Distance
waves were propagated until convergence occured, a
rather time-consuming procedure.

We now propose a standard heuristic search method
in the configuration space: the A*-algorithm [3].
From a given start point, costs are propagated unitl
the goal-point is reached. A suitable heuristic is
the lenght of the shortest path to the goal, assumed
that obstacles are not present.

Metrics which can be used are approximations of
the euclidean metric (like the chamfer metric, see
Borgerfors [4]) or non-homogeneous metrics. We

PRECEDING PAGE BLANK NOT FILMED 153 “OISEDING PAGE BLANK NOT FILMED

1

propose to use the 1latter, to be built of chamfer
distances, multiplied by a factor dependent on the

distance to the obstacles. The distances to the
obstacles can be calcualted by a standard distance
transformation. The minimum distance in the real

space from the robot to the obstacles is decisive for
the metric in the configuration space.

In the surroundings of obstacles local distances
are larger. The robot will avoid these areas whenever
possible. During execution of the path the robot is
given a fixed velocity in the configuration space.
The local metric provides a slow speed near obstacles
and a high speed away from obstacles. If the goal and
start are defined as "obstacles" in the determination
of the metric an acceleration from the start and a
deceleration towards the goal is obtained
simultaneously.

Note that our approach differs from the penalty

approach [5]. in the penalty approach the finding of
a path can not be guaranteed, because only 1local
information is used. With the A*-algorithm however,

the shortest and safest path is always found.
References:

[1] T. Lozano-Perez, "Spatial Planning: A
Configuration Space Approach", IEEE Trans. Computers,
Vol. C-32, No. 2, February 1983.

[2] P. W. Verbeek, L. Dorst, B. J. H. Verwer and F.
C. A. Groen, "Collision avoidance and path finding
through constrained distance transformation in robot
state space", Proc. Intelligent Autonomous Systenms,
Amsterdam, Holland, December 8-11, 1986.

(3] P. E. Hart, N. J. Nilson and B. Raphael, "A
formal basis for the heuristic determination of
minimum cost paths, IEEE Trans. on Systems Science and
Cybernetics, vol. SSC-4, no. 2, pp 100-107, 1968.

[4] G. qugefors, "Distance transformation in digital
images", Computer Vision, Graphics and Image
Processing, vol. 34, pp 344-371, 1986.

[5] K. 8S. Fu, R. C. Gonzalez and C. S. G. Lee,

"Robotics, Control, Sensing, Vision and Intelligence",
MacGraw-Hill, 1987, page 512.

154

N88-16390

A Multiprocessing Architecture for Real-Time
Monitoring

Thomas J. Laffey

James L. Schmidt

Jackson Y. Read
Simon M. Kao

Lockheed Artificial Intelligence Center
2710 Sand Hill Road
Menlo Park, CA 94025
(415)-354-5209

Abstract

This paper describes a multiprocessing architecture environment for performing real-
time monitoring and analysis using knowledge-based problem solving techniques. To han-
dle asynchronous inputs and perform in real time, the system consists of three or more
separate processes which run concurrently on one or more processors and communicate
via a message passing scheme. The Data Management Process gathers, compresses, scales
and sends the incoming telemetry data to other tasks. The Inference Process consists of
a proprietary high performance inference engine that runs at 1000 rules per second using
telemetry data to perform a real-time analysis on the state and health of the Space Tele-
scope. The I/O Process receives telemetry monitors from the Data Management Process
and status messages from the Inference Process, updates its graphical displays in real time,
and acts as the interface to the console operator. The operator sees a hierarchy of displays
which can be traversed using a mouse, and on which the user can display graphs of the
monitors. The multiprocessing architecture has been interfaced to a simulator and is able
to process the incoming telemetry in “real-time” (i.e., several hundred telemetry monitors
per second). In this paper we will also describe why commercial knowledge-based building
tools are not well suited for real-time domains, thus forcing us to develop our own propri-
etary shell. The system has been applied to the real-time monitoring of telemetry data
from the NASA Hubble Space Telescope (HST) and the application will be described in
another paper at this conference.

155

Introduction

As the application of knowledge-based systems evolves from an art to an engineering
discipline, we can expect more challenging applications to be addressed. Some of the most
challenging and interesting environments are found in real-time domains.

A knowledge-based system operating in a real-time situation (e.g., satellite telemetry
monitoring) will typically need to respond to a changing task environment involving an
asynchronous flow of events and dynamically changing requirements with limitations on
time, hardware, and other resources. A flexible software architecture is required to provide
the necessary reasoning on rapidly changing data within strict time requirements while
accommodating temporal reasoning, non-monotonicity, interrupt handling, and methods
for handling noisy input data.

The Problem

Like other existing satellites, the NASA Hubble Space Telescope (HST) has not been de-
signed to to be an autonomous spacecraft. Its engineering telemetry will be monitored
for vehicle health and safety 24 hours a day by three shifts of operators in the ST Opera-
tions Control Center (STOCC) at the NASA/Goddard Space Flight Center in Greenbelt,
Maryland.

Six operator workstations (four to monitor the major subsystems and two for command
and supervision) will be used to monitor the incoming telemetry data. Each workstation
consists of two color CRTs which display numeric values, updated in real time.

e On one CRT the operator can bring up a page of formatted telemetry data (where
a page consists of about 50 different monitor mnemonics and its associated value)
or a page consisting of a chronological history of events that have occurred (e.g., a
monitor out of limits)

e The other CRT is a slave to any other console and can be used to display what is
being shown at another workstation

For the HST there are 4,690 different telemetry monitors in 11 different formats avail-
able for interpretation. In normal operating mode, each monitor is sampled at least once
every two minutes, with some being sampled many times during that interval. The telem-
etry format may be changed manually by ground operations or autonomously by the HST
under certain situations. The telemetry data is subject to a variety of problems including
loss of signal and noise in the transmission channel.

As in any large system, the job of the console operator is difficult because of the
complexity of the HST and because it is hard to determine the exact state of the satellite
at any time due to the massive amounts of data arriving at such short intervals and the
ever present possibility of non-nominal behavior.

156

Why Commercial Tools are Inadequate for Real-Time
Monitoring

Real-time domains present complex, dynamic problems because of their dependence on
the time factor. A real-time expert system must satisfy demands that do not exist in con-
ventional domains. Current shells are not generally appropriate for real-time applications
for the following reasons:

1. Thé shells are not fast enough

The shells have few or no capabilities for temporal reasoning

The shells are difficult to integrate in an efficient manner with conventional software
The shells have few or no facilities for focusing attention on important events

The shells offer no integration with a real-time clock

The shells have no facilities for handling asynchronous inputs

The shells have no way of handling software/hardware interrupts

The shells cannot efficiently take inputs from external stimuli other than a human

® 9 N 2 & e Wb

The shells cannot guarantee response times

10. The shells are not built to run continuously

We next describe a monitoring system called L*STAR (for Lockheed Satellite Telem-
etry Analysis in Real Time) being built to aid the HST console operator in performing
the real-time monitoring and analysis of telemetry data from the HST. L*STAR runs on a
DEC VAXStation II/GPX running under VMS and uses data produced by the BASS Tel-
emetry System at the HST Hardware/Software Integration Facility (HSIF) in Sunnyvale,
California.

Solution Method

Three separate processes are used for the real-time analysis of rapidly changing satellite
telemetry data. Each of the processes operates independently and communicates informa-
tion via message passing. (NOTE: We use the terms process and task interchangeably in
this paper.) The different processes are shown in Figure 1:

¢ INFERENCE PROCESS — used to analyze the dynamic data by means of forward
or backward chaining rules

e DATA MANAGEMENT PROCESS — used to gather, scale and compress the in-
coming telemetry data

157

4 R 4
Data Inference
Management > Engine
o Acquisition
o Smoothing <
o Compression List of tasks
o Limit checking to perform
N J . A J
()
/0 Task —t
ﬁ
o User interface
o Graphics output

\- _

Figure 1: Software Architecture

158

e 1/0 PROCESS — used to provide an interface (including real-time graphics) to the

operator

Having three independent tasks allows us to distribute the system across different proces-
gsors. When all three tasks are operating on one processor, the timesharing facilities of the
operating system take care of scheduling when each is run.

If all the tasks were done in one process, i.e. sequentially, the Inference Process could
not be reasoning with existing data while the Data Management Process was getting new
data, or while the I/O Process was performing screen output. The main purpose of having
separate tasks was to give the Inference Process complete freedom from input/output
worries and let its limiting factor be the processing power of the CPU on which it is
resident.

Mailboxes are used for the message passing between tasks. They are used as fast, one-
way, in-memory channels for communication of data. Using this mechanism, the Inference
Process is only slowed by having to read or write to the mailbox.

A typical scenario follows: The Inference Process examines its knowledge base and sends
a set of messages to the Data Management Process indicating which telemetry monitors it
needs to perform its analysis. It also sends messages containing other information the Data
Management Process needs to know about each telemetry monitor such as the sampling
rate, whether it should be smoothed, the scaling factor, alternate names, and to which
telemetry set it belongs.

Incoming telemetry data streams are captured from the flight hardware and after initial
preprocessing of the raw data by ground computers are fed to the Data Management
Process. After some scaling and data compression, this process sends the data of interest to
the Inference and I/O processes. The Inference Process can ascertain, using its knowledge
base, if the data correspond to nominal vehicle behavior. The I/O Process consists of
a data flow diagram of the flight system software and magnitude vs. time plots of the
telemetry data. The plots, which are strip charts updated in real-time using data from
the Data Management Process, can appear by using mouse clicks when the cursor is over
appropriate parts of the diagram. Should the HST change state or non-nominal behavior
be detected, messages will be sent from the Inference Process to the I/O Process and
subsequently displayed.

The knowledge in this real-time monitoring system is contained within the rules and
frames which make up the knowledge base. The knowledge base, used primarily by the
Inference Process, contains the critical telemetry items to be monitored and rules to infer
the current state and health of the HST. Of the over 4,000 different telemetry monitors, only
a small number (about 10%) are used by the operators to determine spacecraft behavior.
If, however, non-nominal behavior is detected, other telemetry monitors might be used to
diagnose the problem. This would be done by having a rule fire which causes a message to
be sent from the Inference Process to the Data Management Process, indicating which new
set of telemetry monitors it needs to know about. Rules can also send messages changing
the sampling rate of telemetry at which it is already looking.

159

Discussion

As more and more complex vehicles are put into orbit, it becomes essential that sophisti-
cated methods for evaluating the health of and diagnosing problems within these vehicles
be developed. Real-time knowledge-based systems offer promise as an excellent means
of dispersing such information. During development, testing is an important part of the
cycle. In doing such testing, system designers have to be able to monitor and diagnose
the telemetry streams. This kind of expertise should not have to be independently learned
by the vehicle operators after launch, when the developers are out of the picture. Thus,
for a system such as the one described in this paper, having the expertise saved for the
operations aspect is an invaluable step.

160

Zapert gystems Relations N88;16391

Space Applications

Michael Brady
Cognitive Systems Lab
University of Alabama in Huntsville
Huntsville, AL 35899

Abstract

Independently designed expert systems that operate in common
environment will almost certainly share some resources and data.
They will also be connected in a network of interdependencies,
each one reliant upon the others. Measures must be taken,
therefore, to insure that these expert systems can communicate
with one another.

This paper addresses the problem of expert systems relations
as they pertain to space applications. First, these
systems will be categorized and the relationships between them
will be analysed. Then, an expert systems cooperation paradigm
will be proposed. This paradigm will address various types of
communication and coordination issues in an attempt to create a
general model applicable in a variety of situations.

Introduction: The Commo Goal

The interactions between expert systems that one might
expect to find on a modern spacecraft are likely ¢to be as
complicated as the systems themselves. These systems must
interact, however, in order to achieve their common goal of a
successful mission. Like any team, these systems should each do
what they do best, while assisting their teammates as much as
possible.

Current set of tasks: D
N
Current resources: N

afd

TIME
fig. 1 Mission Model

A simple model of a mission is depicted in fig. 1. The terms
"task" and "resource" are used in the most general sense. Example
tasks include life support systems, experiments, and fixing a

161

broken camera. Example resources include oxygen, electrical
power, and tools. The common goal of the expert systems, then, is
to cooperate in order to insure that at any given point in time
the spacecraft’s available resources either meet or exceed the
requirements of the current set of tasks.

The Expert Systems Cooperation Paradigm

Ten categories of expert systems are listed in [1]). This
1ist can be condensed into four classes which one would be likely

to find on a spacecraft:

Diagnosis -- Monitoring and interpreting sensory data.
Possibly making predictions based on that
data, ultimately trying to identify any
problems that might affect the resource
pool.

Scheduling -- Developing a plan whereby all tasks are
completed taking into consideration
resource constraints.

Repair -- Helping provide for resource repair either
directly or in the form of advice.
Control -- Controlling mission tasks in accordance

with the schedule.

Given these four classes, the author proposes a paradigm for
expert systems cooperation depicted in fig. 2. The "Physical
System" may be the spacecraft as a whole or any subsystem
therein. The paradigm is, therefore, meant to be valid in many
different applications of varying scope. It is also possible to
ignore any components of the paradigm that are not needed. If,
for example, some subsystem does not have a repair expert systenm,
that module and its associated data (the Symptoms and Repair
Reports) can be ignored.

EXPERT SYSTEMS) BLACKBOARD
!

]
pracros1s | ! L
]
]
]
[}

DAMAGE REPORT

]
' SCHEDULER [j
L}
: v | oprrMizep
' SCHEDULE REPAIR

) REPORT
' REPAIR
[i
: '
' | SYMPTOMS

|1 . REPORT

' 1| UNOPTIMIZED)
' ,| INTERIM
' CONTROL .| scuEbuLE
'
]

fig. 2 The Expert Systems Cooperation Paradigm

The paradigm utilizes a blackboard architecture, as
described in [2], to facilitate expert systems cooperation.
According to this scheme, each system monitors the blackboard,
looking for something it can contribute. For example, when a
Symptoms Report is written by the Diagnosis system, the Repair
system will become active. Conversely, whenever the Symptoms
Report is empty, the Repair module is inactive because there is
nothing it can contribute. It is important to note that all
communication between expert systems is through the blackboard.

In a typical case, considering the complete paradigm, both
the Diagnosis and Control modules are active at the outset of the
mission. At this point all the data objects except the Optimized
Schedule are empty. When the Diagnosis system observes or
predicts some abnormal change in the resource pool, it writes a
Damage Report for the Scheduler and a Symptoms Report for the
Repair system.

Problem Rescheduling
Complete
Optimized Unoptimized Optimized
Schedule Schedule Schedule

fig. 3 Unoptimized Interim Schedule

At this point there is a problem, however. The Scheduler
must revise the optimized schedule, taking into consideration the
resource changes, but what about the tasks that must continue
during the rescheduling process? Moreover, the Scheduler cannot
operate without a definite start time and a definite set of tasks
to consider. Clearly, there must be an Unoptimized Interim
Schedule for use in the time between the problem diagnosis and
rescheduling completion (see fig. 3). The time of this interim
should be an upperbound of the runtime of the Scheduler. The
Unoptimized 1Interim Schedule should include as many tasks of the
highest priority as can be accommodated. The Control systen,
then, will use the Unoptimized Interim Schedule whenever one
exists. This process is the same when the Repair system, via a
Repair Report, signals the Scheduler that the Resource problen
has been fixed.

conclusjions

This paradigm will handle multiple resource faults, but
includes no methodology for the isolation of or recovery from
catastrophic failures. This sort of problem should be handled by
the individual expert systems, and is independent of the paradigm
in question. The paradigm will, however, help system designers
plan the input to and output from their systems. It will also,
hopefully, provide a useful framework for the development of the
system or subsystem as a whole.

References

1. Nii, H. P., "Blackboard Systems: The Blackboard Model of
Problem solving and the Evolution of Blackboard
Architectures,” "AI Magazine," Summer, 1986, pp. 38-52

2. Waterman, D. A., "What Expert Systems Have Been Used For," A
Gujde to Expert Systems, 1986, pp. 32-48

164

N88-16392

PROBLEM SOLVING AS INTELLIGENT RETRIEVAL FROM
DISTRIBUTED KNOWLEDGE SOURCES

Zhengxin Chen

Department of Computer Science,
Louisiana State University,
Baton Rouge, LA 70803

Abstract. We propose a model of problem solving by dynamically distribute the
knowledge sources to several processors in a controlled manner. Example is given, the
features of this approach are also summarized.

Introduction

Recently, intelligent distributed systems have drawn much attention. Researches in
distributed artificial intelligence (DAI) have focused on cooperative solution of problems
by a decentralized and loosely coupled collection of knowledge sources (KSs), each
embodied in a distinct processor node [18]. Most previous works in DAI deal with distri-
buted problem solving techniques, for instance, the investigation of phases of problem
decomposition, sub-problem distribution, sub-problem solution, and answer synthesis
[16]. In this paper we investigate distributed computing in intelligent systems from a dif-
ferent perspective. From the viewpoint that problem solving can be viewed as intelligent
knowledge retrieval, we propose the use of distributed knowledge sources in intelligent
systems. Owing to space limitation, no technical detail is given in this paper.

A model that integrates knowledge

We start from a cognitive model for knowledge retrieval reported earlier [2,3].
Information chunks or pieces (will be referred to as documents) are acquired, mapped
into internal structure and integrated into an overall knowledge base, while the docu-
ments (which form the sources of the knowledge) are still identifiable. Notice that this
model is very general. The documents may be either English-like texts or numerical data
sets, and may have quite heterogeneous structures. The mapping mechanism may also
vary a lot. For instance, it may be a natural language understander to "understand" the
natural language-like input or a kind of data analyzer to analyze the input numerical data.
These internal structures (i.e., the result of the mapping) are referred to as knowledge,
integrated to an overall knowledge base, and can be retrieved. This kind point of view is
consistent with the view that knowledge is condensed information [15]. After knowledge
is retrieved, they will be presented in a easily readable form (e.g., by reconstructing the
documents) to the user.

Problem solving and knowledge retrieval

The central idea of this report is to relate problem solving to knowledge retrieval.
This is a topic which needs further investigation, although it is not new. In fact, the rela-
tionship between information retrieval and question-answering system which has been
discussed by many authors is basically also true for the relationship between knowledge
retrieval and problem solving. According to [8], systems having broad, possibly interre-
lated data bases whose answer-computation mechanisms is not capable of great depth
tend to be called question-answering systems while systems having less-interrelated data
bases whose answer-computation mechanism is capable of more depth tend to be called
problem-solving systems. Based on this understanding, if a question-answering system is
a kind of information retrieval system that understands the texts, it is reasonable to say
that a problem-solving system may be realized as a kind of knowledge retrieval system
which needs in-depth understanding and handling of the knowledge. Procedurally, a
problem solving system utilizes the knowledge in a manner which results in a sequence
of retrieval steps. The objective of the problem solving system is to make decisions to

165

identify and integrate certain parts of knowledge for certain goal(s) and actually use the
related knowledge in an intelligent way. The tasks of the decisions are to make a
coherent final plan or to integrate various partial solutions, to name a few.

The use of distributed knowledge sources

What is more, frequently it is desirable to retrieve knowledge from more than one
knowledge source (KS). For instance, operational system exists in space science which is
able to combine evidence from multiple sources [1]. But along with this direction, much
work is still ahead. This particularly includes to develop a useful control mechanism to
make this scheme work systematically. The rationale of using our model for this purpose
can be justified as below. It has been recognized that sufficiency of knowledge is one of
the most important requirements in generating some sequence of partial interpretations
that culminates in correct complete interpretation [11,12]. In case of lacking the proper
tool of handling the entire knowledge at once, we may try to distribute the entire
knowledge into several smaller knowledge sources, each of them can be handled by an
independent processor. The various knowledge sources serve various documents in our
model; the task of intelligent retrieval is to capture the underlying meaning of these
knowledge sources handled by the processors. Each knowledge source provides part of
the knowledge needed to solve the problem; therefore, an additional task involved in the
problem solving process is to control these processors and to force convergence of the
solution, and an overall solution based on all the partial solutions can thus be finally
obtained.

By "intelligent retrieval" we mean that (1) the problem solver deals with the "inter-
nal form" (or meaning) of the knowledge sources, not necessarily its original form; (2)
the problem solver is able to use its rule base to handle the partial or conflicting informa-
tion obtained from different knowledge sources. Therefore, even though each node has
only a limited view of the input data, the problem solver is able to integrate the partial
solutions and to convergent to a final solution.

The architecture of our problem solver is explained in Fig. 1. The conteptual
memory serves a role of index of the knowledge sources; it is used in integration
knowledge from different knowledge sources as well as retrieval of these knowledge
sources. The rule base provides rules for integration of knowledge sources.

KS KS KS

) '
mapping mapping mapping

\ ! /

KB KB KB

CONCEPTUAL OVERALL KB /
MEMORY
(CONTROL of distributing knowledge)

Fig. 1

The fundamental idea is going to be illustrated as below. Previously we described in
model which concemns the problem of generating a plan to access heterogeneous numeri-
cal database dealing with observational data. In the following we consider another appli-
cation, which concerns qualitative reasoning on partial results obtained from distributed
quantitative processors (part of this work was reported in [5]). This second application,
which handles the conflicting information obtained from partial solutions, is more interst-
ing.

This approach utilizes the original model in a "reversed” manner. Traditionally, in a
knowledge-based system, knowledge is acquired first, and serves as the environment of

166

solving the problems. In our approach, input data are treated as knowledge source, and,
consequently, solving this specific problem means to understand the data, i.e., to intelli-
gently retrieve the knowledge implied by these data. This also means to distribute data
(instead of problem) and assign them as knowledge sources to processors in a controlled
manner. The function of the processors is to process (or map) them into internal form (or
"knowledge").

Our approach is somewhat related to the work of distributed Hearsay-II [11,12], in
which a distributed approach of problem solving has been investigated. An interpretation
system accepts a set of signals from some environment. Two major questions are how to
interpret the data and how to decompose a given interpretation technique for distribution.
It is necessary to operate on local databases that are incomplete and possibly inconsistent
and to integrate incomplete partial solutions to construct an overall solution. The elimina-
tion of explicit synchronization has increased parallelism. Our approach shares some
common features with these previous approaches, the difference is only at what is to be
decomposed or distributed.

To illustrate, let us consider the solving of the following problem. This problem
solver deals with periodically collected observational numerical data which involve a lot
of variables. Only one of the variables is considered as system function (dependent vari-
able), the others are treated as independent variables (although they may be somewhat
interrelated). The problem is to find, among a large set of independent variables, the
most important variables which effect the system function. Algorithms exist to deal with
a limited amount of variables, and they can be actually carried out by existing software
(for instance, the technique of utilizing entropy data analysis introduced by [9]). Since
each time only a limited set of variables can be considered, each time we can only obtain
a partial solution. The type of problem discussed in this paper is similar to the data
compression schemes for inertial navigation systems discussed in [13], in which frequent
data are collected while the computation capability is limited, but the techniqued used
here is entirely different.

For this particular problem, our scheme of solving problem through retrieval of dis-
tributed knowledge sources can be explained as follows. Data are decomposed into
several subsets, each is able to be handled by a single processor. The part of data distri-
buted to a processor (in our current example, in addition to the dependent variable, each
decomposed data set includes several independent variables), is viewed as knowledge
source associated with it. (The knowledge sources are not necessarily disjoint). Each
process can treat its own knowledge source either as a single unit or a set of knowledge
sources at lower levels. All these processors can work on its own knowledge source
simultaneously and find the most important variables based on this knowledge source. As
the result of this processing (or "mapping") is a set of rules which reflect the knowledge
implied by this particular set of data. Each assumes its knowledge source is the only
existing knowledge to the system, and claims the variables it found are the dominant
ones to the whole system. Under this architecture, the type of problem to be solved can
be restated as follows: given a set of data which are distributed to the KSs (with arbitrary
number), how to determine the limited number (say, 4) of dominant variables from the
results of the competing processors?

Basically, our problem solver solves this problem in the following manner. A set of
rules maintained in the central node is used to integrate the intermediate results obtained
from the processors. Integration includes to handle the conflicting information and draw
similarities among the partial solutions provided by the independent processors. A few
new sets of data which includes reduced number of variables are thus created; they are
treated as knowledge sources and are then assigned to several processors. The number of
variables remained in the knowledge sources are thus reduced and finally they are con-
vergent to the solution. There is a centralized control over the knowledge source the pro-
CESSOr pPOSSEsses.

167

The problem can be solved by following those steps:

1. Decompose the input data into several subsets, each consists several independent vari-
ables and the dependent variable. These subsets form the distributed knowledge sources,
each of them is associated with processor(s) which is(are) able to process the associated
knowledge source in some way. In addition to this kind of decomposition, a set of rules
also exists so that these partial solutions may be integrated later by these rules.

2. Retrieve knowledge processed by processors, use rules to corporate information and
get rid of conflicting information.

3. Form reduced knowledge sources, and assign back to some processing nodes.
4, Repeat steps 1-3 until a convergent solution set is obtained.

Notice that in step 1 all the processors related to knowledge sources are not neces-
sarily homogeneous. But to simplify the discussion, in the following example, we will
assume all the processors take the same form. Notice also that since the number of vari-
ables to be considered at each iteration is at least decreased by one, our scheme can
guarantee the convergence of the solution, although this does not necessarily means
optimal at all (see the conclusion part of this paper).

To illustrate, suppose we have the original data including variables A, B, C, D, E, F
(Fig. 2a), but processor is able to handle up to four variables at each time. Suppose based
on domain related knowledge, it is able to organize knowledge sources in a way shown in

Fig. 2b. After processing these knowledge sources parallelly, it is possible to identify the
partial solutions obtained from these knowledge sources, and rules may be used to form
"better" knowledge sources which only includes variables A, B, C, or A, B, E. Therefore
only variable combination A, B, C, E needs to be considered. The size of the solution set

is thus reduced. The final solution of the original problem can be found by processing
this data set.

A B C D E F

(a) A B C E

(c)

(b)
Fig. 2

Features and comparisons with other works

Usually, in distributed problem solving, a single task is envisioned for the system,
while distributed processing systems synthesize a network which is able to carry out a
number of widely disparate tasks. Since our system is aimed to solve one single task at
one time, it is close to distributed problem solver, but the control in our system is not
decentralized. Briefly, our scheme has the following features:

(l)kDeliberately distribute input data as knowledge sources rather than decompose the
task.

(2) Centralized control is only restricted at each knowledge source level.

(3) The problem is solved gradually by reducing knowledge sources, there does not exist
a separate phase of answer synthesis.

_The system described in this paper may be referred to as distributed knowledge pro-
cessing system. Although the majority works related in distributed problem solving deal

168

with knowledge sources which cooperate in the sense that no one of them has sufficient
information to solve the entire problem [17], our scheme is the only one which controls
the distribution of the knowledge sources (instead of the problems) in a dynamic manner.
This is the fundamental difference between our approach and the others.

A systems level approach to distributed processing was suggested in [14], in which
a scalable, dynamically reconfigurable architecture was claimed to be necessary. This
means a computer with no architecturally imposed performance limits. If this approach is

to find a hardware solution, then our purpose is to find a software solution for a similar
problem.

Integrating knowledge sources for computer "understanding" tasks was discussed by
[6]. Our scheme is similar to that scheme which is a system of cooperating experts run-
ning in separate images. But ours is aimed to be a general knowledge integration scheme
extended from the existing IR model, and is not restricted to text (written in English)
understanding. Therefore, in this sense, ours is more general.

Concluding remarks

The method introduced in this paper does not necessarily generate the "optimal”
solution; but, it does provide an acceptable one. We have successfully used the method
described in this paper to find the effect of some most important variables to the system
function [5]. Moreover, since the method introduced in this paper involves symbolic
(qualitative) reasoning attached to numerical processors, it may be viewed as an example
of coupling symbolic and numerical computing [10], which has been recently more and
more discussed in space science as well as many other research fields.

References

[1] Campbell, S. D. and S. H. Olson, "Recognizing low-altitude wind shear hazards from doppler weather radar: an artificial intelli-
gence approach,” J. Atmospheric and Oceanic Technology, vol. 4, No. 1, March 1987, pp. 5-18.

[2] Chen, Z., "Some aspects of a cognitive model for information retrieval,” Proc. 18th Pittsburgh Conf. on Modeling and Simulation,
1987.

[3] Chen, Z., " A language for modeling users virtual machine of information retrieval," Proc. 1987 IEEE Workshop on Languages for
Awtomation, 1987,

[4] Chen, Z., "PENDS: a prototype expert numeric database system,” paper presented at 2nd AIRES Workshop (Al Research in
Environmental Science), 1987.

[5] Chen, Z. et al., "Qualitative reasoning for numerical systems," paper presented at 2nd AIRES, 1987.

[6] Cullingford, R., "Integrating knowledge sources for computer 'understanding’ tasks," IEEE Transactions on Systems, Man and
Cybernetics, vol. SMC-11, No.1, Jan. 1981, pp. 52-60.

[7] Davis, R. and R. G. Smith, “Negotiation as a metaphor for distributed problem solving," Artificial Intelligence, 1983, pp. 63-109.
[8] Green, C., The Application of Theorem Proving to Question-Answering Systems, Garland Publishing, New York, 1980.

[9] Jones, B. "Reconstructability considerations with arbitrary data”, Int. J. Gen. Sys., vol. 12, 1986, pp. 1-6.

[10] Kowalik, J. S. (ed.), Coupling Symbolic and Numerical Computing in Expert Systems, North Holland, 1986.

f11] Lesser, V. R. and D. D. Corkill, "Functionally accurate, cooperative distributed systems,” /EEE Transactions on Systems, Man,
and Cybernetics,” vol. SMC-11, No.1, Jan. 1981, pp. 81-96.

[12] Lesser V. R. and L. D. Erman, "Distributed interpretation: a model and experiment,” JEEE Transactions on Computers, vol. C-29,
No. 12, Dec. 1980, pp. 1144-1163.

[13] Medan, Y. and [. Y. Bar-Itzhack, "Batch recursive data compression schemes for INS error estimation,” JEEE Transactions on
Aerospace and Electronic Systems, vol. AES-21, No. 5, Sep. 1985, pp. 688-697.

[14] Meier, R. J. I, "A systems level approach to distributed processing,” Computer Sciences and Data Systems (Proceedings of a
symposium), NASA Conf. Pub. 2459, vol. 2, pp. 143-172.

[15] Michalski et al.(ed.), Machine Learning: An Artificial Intelligence Approach, Vol. 2, Kauffman, 1985.

[16] Smith, R. G. and R. Davis, "Framework for cooperation in distributed problem solving,” /EEE Transactions on Systems, Man,
and Cybernetics, SMC-11, No. 1, Jan. 1981, pp. 61-70.

[17] Smith, R. G., "Report on the 1984 distributed artificial intelligence workshop," Al Magazine, Fall 1985, pp. 234-243.
[18] Smith, R. G., "The 1985 workshop on distributed artificial intelligence,” Al Magazine, Summer 1987, pp. 91-97.

N88-16393

Application of Parallel Distributed Processing
to Space Based Systems

J.R. MacDonald, H.L. Heffelfinger
TRW, Huntsville Operations
213 Wynn Drive
Huntsville, Alabama 35807

Abstract

This paper explores the concept of using Parallel Distributed Processing (PDP) to en-
hance automated experiment monitoring and control. Recent VLSI advances have made
such applications an achievable goal. The PDP machine has demonstrated the ability to
automatically organize stored information, handle unfamiliar and contradictory input data
and perform the actions necessary. The PDP machine has demonstrated that it can per-
form inference and "knowledge operations" with greater speed and flexibility and at lower
cost than traditional architectures. Current automated process and control algorithms use
knowledge and inference mechanisms to solve problems which would ordinarily require the
expertise of the best human practitioners. In applications in which the rule set governing an
expert system’s decisions is difficult to formulate, PDP can be used to extract rules by as-
sociating the information an expert receives with the actions taken. There are many
potential applications for very large scale hardware parallelism in the execution of space
based process monitor and control systems.

Introduction

The practical possibilities of large scale parallel machines have been significantly en-
hanced by recent technological advances in VLSI research and production. Relatively low
cost and easy access to VLSI hardware has enabled researchers to more closely examine
parallel processing problems in general, and the application of neural nets to real world
problems. The application of knowledge based systems to on-line, real-time environments
such as automated experiment monitoring and control typically demands large complex sys-
tems reasoning. Control of these experiment systems stresses the current space based

PRECEDING PAGE BLANK NOT FILMED L% < 3

computer environments well beyond current technology. Size, reliability, and response
time constraints of the space environment quickly overload conventional von-Neumann
machine knowledge applications. However, the fine grained parallelism made possible by
PDP technology has provided an alternative route to space based process monitor and con-
trol.

PDP networks are a concept of knowledge representation that consists of a number of
processing elements interconnected in a weighted, user-specified fashion. The interconnec-
tion weights between the processor nodes are analogous to the memory of a conventional
system. Each processing element calculates an output value based on the weighted sum of
its inputs. A training rule is used to correlate the input data with the output or desired out-
put (specified by an instructive agent) and adjust the interconnection weights. In this way
the network is able to learn patterns or imitate rules of behavior. It is this ability to define
and control decision making that would make this sort of system well suited to support
space based processing problems. The division of the processing demands among proces-
sors makes it possible to achieve linear performance improvements for space based
processing applications. This paper will explore PDP network techniques in the application
of massively parallel primitive processors to achieve very high speed, fault tolerant, low cost
support for the types of problems associated with controlling experiments in a space based
environment.

Space Based PDP Architecture

PDP network technology is a concept of computational processing based upon highly
interconnected low level processing units. PDP technology seeks to develop and enhance
processing capabilities in areas such as real-time high-performance pattern recognition,
knowledge processing for inexact knowledge domains, and fast, precise control of VLSI
simulation. The aims of this technology are, therefore, clearly related to those of Artificial
Intelligence (AI). Over 30 years of research has provided broad processing requirements
for pattern recognition, knowledge processing, and simulation of processes. PDP machine
research has been directed toward finding solutions to these difficult computing problems.

The PDP architecture is the formal specification of a particular network or bulk sys-
tem configuration (i.e., the equations of the dynamical system that defines the PDP). This
architecture is analogous to a mathematical algorithm or logical procedure being coded and
run on a wide variety of computer hardware. The word implementation is reserved for use
in describing the engineering process of developing an appropriate PDP architecture and
selecting suitable implementation hardware for the specific application.

172

The PDP conceptual processing abilities are based upon an array of highly intercon-
nected Processing Units (PU)[1,3]. Figure 1 shows a schematic diagram of a PDP network
and an individual PU. The network is make up of input units, hidden units, and output
units. The hidden units are used to extract progressively more complex features from the
input units. This allows more complex tasks to be learned. Note that each PU receives
several input signals and has a single output that fans out as input signals to other PUs.
Each PU assigns a weight to each input they receive. The sum of the weighted signals deter-
mine whether a receiving PU will itself output a signal. Thus this process continues through
the PDP machine. The processing cascades through many iterations and the output could
be a binary answer to a question or a complicated signal to be transmitted across an exter-
nal interface. The weights are determined by tuning the system until it consistently
produces the right output based upon the system inputs. A typical processing element
operation might be:

Transfer >

Interconnection
Inputs feip Weights — Function Output
L Training |« =—————_I
Rule

The PDP adjusts itself by way of feedback control systems that combine stimuli and
feedback from the responses to adjust the weights so as to get increasingly correct respon-
ses. It is these adaptable, programmable connections that makes the PDP machine special.
The PDP machine was initiated in the belief that coupling parallel processing and artificial
intelligence could accelerate the rate of progress toward machines that could "learn" and
make predictable, weighted decisions within the confines of their knowledge base. The

PDP machine encodes knowledge in the connection of its processing units. Each set of con-
nections represents a pattern of values for a few features. Together the features describe
environmental states, that is, values that occur in the system’s environment. The strengths
of the connections encode the frequencies with which each of the different patterns occur
in the environment. Thus, the interconnections are used to represent events in the environ-
ment. The design goal of a PDP machine for a space based environment should be guided
by the following goals:

o Effective use of massively parallel processing.

» Flexibility of interaction with different sensors, actuators, and interfaces.

« Distributed parallel decision-making capabilities.

o Flexibility and ease of expansion of the system capabilities.

o Graceful integration of specific experiment control plans.

173

PDP Machine

&b &
Input Units
Weightsw

e } e
Nogosloslode

o O O O Output
L2 A A SRR A

Output

PROCESSING UNIT

a
x ’/’
Inputs @ o= » Outputs
® \
an

W = interconnection weight
© = threshold

Transfer function - a sigmoid:
Output = 1/{1 + exp(threshold-Sum[w inputs})}

Learning rule:
W <= w + f'(output)[Desired output-output]

FIGURE 1. Schmatic dlagram of a PDP Network

A key approach in the PDP architecture is the use of an adaptive filter. The adaptive
filter can accept a real-world analog input and compare it to a stored pattern. The stored
pattern represents the desired input level which can then be modified as necessary so that
echo-free signals can be produced the correct results. A more abstract argument driving
the design of the PDP network is machine efficiency, that is, the optimal utilization of the
total computer circuitry. In the more familiar structure of a modern computer (the von
Neumann architecture) most of the computer’s circuitry in the memory is not in active use
most of the time. This is very wasteful from a pure resource management standpoint. The
PDP machine addresses this problem by using many processors and memories, but does so

174

on a much grander scale than most. The parallelism in the PDP machine is extremely fine-
grained; it is essentially "data-level parallelism." The fine-grain division of labor and the
high speed allows the accomplishment of tasks traditionally outside the operation capacity
of conventional systems, among which are constraint search, pattern recognition, and so
forth. Even though it fits quite neatly into the definition of an parallel processor system
design, the PDP machine goes well beyond most machines in this category in the flexibility
of its structure and its amenability to various problem types.

Command and control of typical space based experiments involves both telemetry and
status monitoring and the generation of command messages. These tasks are typically car-
ried out in conventional (sequential) computer systems. As systems and environments
become more complex, distributed systems become increasingly attractive as well as neces-
sary to achieve higher throughput for a given level of computational power and higher
overall system availability. As knowledge-based systems grow in size and scope, they push
conventional computing systems to their limits of operation. For space-based experiment
control systems, response from a conventional implementation of an expert system may not
be practical. Significant performance increases in process monitor and control systems ap-
plications could be realized through distributed processing or the use of specialized
massively parallel hardware.

Typical space systems computer operations involve monitoring and control processes
such as system initialization and shutdown and power system control. Although the perfor-
mance of tasks such as sensor monitoring, particularly exception monitoring, is often
automated, the corrective action - the reaction to anomalies - is typically done by on-board
personnel. The exponential increase in system complexity and processing speeds in dis-
tributed processing systems pose a serious problem for meaningful, effective human
interface as well as timely, effective corrective action. When these factors are coupled with
non-linear increases in costs, safety considerations, and longer mission durations, they
provide a significant incentive for improved knowledge based system processing concepts
and applications. The demands of the space based environment, that is, the real time
processing of experiment feed-back and other sensor based data, suggest the necessity for
efficient handling of data and telemetry in the event of environment degradation, or sensor
failure. The process and control system will need to respond to anomalous events that will
be both instantaneous, non-specific, and dependent upon current machine state. The space
based processing system must be effective and reliable in its response to both nominal and
anomalous events.

A PDP network implementation of an expert system as shown in Figure 2 is well suited
for the space based environment. An expert system is designed to explore and symbolically
manipulate problems. Expert systems can be distinguished from other artificial intelligence
systems in that by design they bring large amounts of knowledge to bear in problem solving.
There are two general ways to define an expert systems. One way is by problem domain or

175

competency. An expert system is a computer system which uses domain-specific knowledge
as well as inference procedures to solve problems. The specific problems involved are suffi-
ciently difficult to require significant human expertise in the weighing and evaluation of
data. Restated, an expert system operates in a complex domain and is competent at the
level of a human expert.

Experiment Application

Sensor . Electronic M
' Preprocesssor

oS b
e| Sy BLIN | |eg
| e
AR OO OO P ¥
5| Nesdosdosde” 36
o) o O
Sansor Interface

Figure 2. Space Based PDP Expert System

Another way of defining an expert system is by its structure. An expert system consists
basically of a knowledge base and a control structure. The knowledge base contains facts
about the domain. It also employs heuristics and rules of behavior. The control structure
determines the direction of problem solving. In general, control structures provide for goal
directed problem solving (solving a problem to reach a certain goal) or data directed
problem solving (problem solving that makes use and sense of data available from the
domain environment). A related structural aspect of expert systems is a working memory in
which interim problem solving steps and other information may be temporarily stored while
they are being used in working toward a solution. This structural definition of an expert sys-
tem is clearly related to PDP networks functional capabilities.

Typical applications of expert modules are in the control and operation of sensors and

actuators, interpretation of sensory and feedback data, devising strategies to accomplish
proposed tasks and the execution of these strategies. A goal might be to operate complex

176

space based experiments independent of human intervention for significant periods of time.
If this be the case, the long term space based systems goal is to define control mechanisms
that will enable integrated experiments to detect error conditions in its working environ-
ment and either perform or provide corrective actions. Such systems must be able to
interpret and integrate qualitatively different, sometimes incomplete, and sometimes con-
flicting sensory information. In other words, it must construct an internal model of the real
world environment in which the experiment will operate. A general problem-solving tech-
nique must be employed. However, specific real-time information must also be integrated
in the execution of plans to solve a given task. It must be a control system which is respon-
sible for and capable of independent control execution through parallel and coordinated
control of multiple sensors and actuators.

The system must evaluate the outputs from sensors and update the state of the experi-
ment actuators according to the rules established by the principle investigator. Various
rules are said to "fire" based on input. An example of a rule for an Earth-bound experiment
environment might be " If temperature greater than 150 degrees then power up fan". The
integrated computer system is in a constant state of sensing and updating the state of an ex-
periment. A simple experiment environment might involve 1000 such rules. Because of
memory requirements and execution speed, even this relatively small knowledge base
would involve significant overhead in a conventional von-Neumann machine and could
quickly overload the system. The PDP machine offers another method of implementation
of constraint based rules. This alternative provides the speed necessary to respond to the
space based system needs.

PDP Knowledge Acquisition Paradigm

In the preceding sections we have discussed a parallel processing architecture and its
ability to build a knowledge base - to "learn." This learning process is, of course, a complex
and controversial problem. Learning algorithms have been proposed as a way to program
massively parallel processors [1,2,3,4,5]. Experiment control system programs using ap-
propriate learning algorithms can be automatically decomposed into small sub-tasks. It is
these sub-tasks that provide an opportunity to distribute processing across parallel process-
ing units, which translates into the connections of a PDP machine.

The PDP machine assigns a weight to each input it receives; the sum of the weighted
signals determines whether a receiving PU will itself fire a pulse, which in turn triggers
other PU’s. This process cascades through many iterations, and the result, is the output.
The PDP machine consist of a number of PU’s interconnected in a weighted, user-specified
fashion. Each PU calculates an output value based on the weighted sum of its inputs. To
program the PDP machine, the input data is correlated with the output or desired output

177

using a learning rule that will adjust the interconnection weights. In this way the machine
learns patterns or imitates rules of behavior and decision making the allows the PDP
machine to support space based processing. PDP model as presented in Figure 1 typically
consists of many simple processing units that interact using weighted connections. Each
unit has a "state" or "activity level", that is determined by the input received from other units
in the network. The threshold term can be eliminated by giving every unit an extra input
connection whose activity level is fixed. The weight on this special connection is the nega-
tive of the threshold, and it can be learned in just the same way as other weights.

The particular PDP machine architecture discussed here is a variation of the Rummel-
hart et. al. [3] multi-layer perceptron employing the generalized delta rule (GDR). The
GDR provides a method of modifying any weight in a network, based on locally available in-
formation, so as to implement a gradient descent process that searches for those weights
that minimize the error at the output units. The PDP system can learn to associate ar-
bitrary input/output pairs by use of the generalized delta rule. Using this the rule, neural
networks can learn to compute arbitrary input/output functions. The mathematics of this
learning approach can answer many questions about the weight, adjustment, and summa-
tion of the interconnection weights. It can also provide some insight into noise sensitivity,
feedback, and system layering. The GDR learning procedure is a generalization of the
delta rule procedure that works for networks which have layers of hidden units between the
input and output units. Multilayer networks can compute more complicated functions than
networks that lack hidden units. However the price that must be paid is a slower learning
process as the system explores the possible ways of using the hidden units.

The application of the generalized delta rule as presented in Figure 3 involves two
phases. First the input is presented and propagated forward through the network to com-
pute the output value for each unit. This output is then compared with the targets, resulting
in an error signal for each output unit. The second phase involves a backward pass through
the network during which the error signal is passed to each unit in the network and the ap-
propriate weight changes are made. This second, backward pass allows the recursive
computation of the error signal as indicated above. The first step is to compute the error
signal for the output units and all of the hidden units. Notice that computation performed
during the backward pass is very similar in form to the computation performed during the
forward pass (though it propagates error derivatives instead of activity levels, and it is en-
tirely linear in the error derivatives). The GDR generates a gradient descent method for
finding weights in any feed-forward network with semilinear units. The learning procedure
involves the presentation of a set of pairs of input and output patterns. The system first
uses the input vector to produce its own output vector. Then this is compared to the
desired output, or target vector. If there is no difference, no learning takes place. If any dif-
ference exists, the weights are changed to reduce the difference.

178

Generalized
Delta Rule

Input ‘ %

LPOP\

\2;&%\
| \\//

Forward Propagation Backward Propagation
To Calculate Output ‘ To Correct Future Outpur

—>

Output

Correction = constant ¢ (Desired Output-Output)

Figure 3. PDP Learning Procedure

When weight change increments are sufficiently small, this learning procedure is
guaranteed to find the set of weights that gives the least mean squared error. The delta rule
essentially implements gradient descent in sum-squared error for linear activation func-
tions. The central idea of the generalized delta rule is that these derivatives can be
computed efficiently by starting with the output layer and working backwards through the
layers. The weight on each line should be changed by an amount proportional to the
product of an error signal available to the unit receiving input along that line and the output
unit sending activation along that line.

From the above learning methodology we see that the PUs in a PDP machine are
trained by the cyclic input and output of data vectors. In this way a computer operating in
the batch mode can be very effective in training the system. However there is a clear need
to provide a real-time interface with a human in order to effect more particular training [5].
The iterative process through which a PDP machine learns is not suited for human interac-
tion. Therefore there is a clear need to both enhance the man-machine interface and
develop more efficient data/response patterns in a PDP architecture.

179

Conclusion

System designs based on the traditional von Neumann approach will be considerably
slower than a systems based on the PDP machine simply because of the limited bandwidth
of the memory-processor connection. These traditional systems cannot match the flexibility
in function that the software-programmable connections, which are the hallmark of the
PDP machine, allow. Networks of larger processors, the MIMD concept, can possibly out-
perform a PDP machine on computation-intensive problems; however, in
constraint-intensive applications, they suffer from the same problem as the von Neumann
designs. Traditional SIMD machines, such as systolic and pipeline machines, suffer from
the problem of requiring a particular structure to solve a problem. Again, this problem is
overcome by the flexibility of the PDP machine’s communication network.

PDP machines employing fine grained parallelism consist of a number of processing
elements interconnected in a weighted, user specified fashion. The interconnection weights
act as memory for the system. Each processing element calculates an output value based on
the weighted sums of its inputs. In addition, the input data is correlated with the output (or
desired output) through use of a training rule that adjusts the interconnection weights. In
this way, the network learns patterns or imitates rules of behavior and decision making.
Process information is not obtained by passing through a normal process and control algo-
rithm, but is provided by the interconnection structure of the network itself. It is our belief
that PDP machines can in fact support high-speed execution of a very large class of space
based process monitor and control systems. The number of processing elements in the in-
terconnection network of a PDP machine makes overall network reliability and fault
tolerance a key consideration in space based systems. Computer systems employing fine
grained parallelism can provide an approach to a number of long standing problems involv-
ing space based experiment applications.

References
1) Hitton, G.E. (1987). Connectionist Learning Procedures. (Tech. Rep. No. CMU-CS-87-
155). Pittsburgh, PA: Carnegie-Mellon University, Department of Computer Science.
2) Hopfield, J.J., Tank, D.W. (1985) "Neural" computation of decisions in optimization
problems. Biological Cybernetics, 52, 14 1-152.
3) Rumelhart, D.E., McClelland, J.L., et. al. (1986). Parallel Distributed Processing.
Cambridge, MA: MIT Press/Bradford.

4) Sejnowski, T.J., Rosenberg, C.R. (1986). NETtalk: A Parallel Network that learns to Read
Aloud. (Tech. Rep. No.J HU/EECS-86/01). Baltimore, MD: John Hopkins University.

5) Shepanski, J.F., Macy, S.A. (1986). Manual Training Techniques of Autonomous Systems
Based on Artificial Neural Networks. Redondo Beach, CA: TRW, Unpublished manuscript.

180

N88-16394

SPACETAB DATA PROCESSING FACILITY (SLPDF)
QUALITY ASSURANCE EXPERT SYSTEMS
DEVELOPMENT

Lisa Basile (NASA/GSFC/Code 564)
Angelita C. Kelly (NASA/GSFC/Code 564)

Goddard Space Flight Center
Greenbelt, MD 20771

ABSTRACT

The Spacelab Data Processing Facility (SLDPF) is an integral part
of the Space Shuttle data network for missions that involve
attached scientific payloads. The SIDPF has developed expert
system prototypes to aid in the performance of the quality
assurance (QA) function of Spacelab and/or Attached Shuttle
Payloads (ASP) processed telemetry data. The SIDPF functions
include the capturing, quality monitoring, processing, account-
ing, and forwarding of data from Spacelab and ASP missions to
various user facilities. The SIDPF consists of two functional
elements: the Spacelab Input Processing System (SIPS) and the
Spacelab Output Processing System (SOPS). The two expert system
prototypes were developed to determine their feasibility and
potential in the quality assurance of processed telemetry data.
The SIPS expert system, Knowledge System Prototype, (KSP), uses
an IBM PC/AT with the commercial expert system shell OPSS5+.
Expert knowledge (from SIPS experts) emilating the duties of
quality assurance analysts was implemented. In an interactive
mode, a SIPS analyst responds to queries resulting in instruc-
tions and decisions governing the reprocessing, releasing or
further analysis/troubleshooting of data. Released data is
forwarded for further processing on the SOPS Sperry 1100/82. The
data are edited, time ordered with overlapping data removed,
decamutated, and quality checked before release to the user.

The SOPS QA analysts isolate problems and select the appropriate
action: either accept the data or request the data to be reproc-
essed. The SOPS expert system emulates this process by utilizing
an expert system shell, CLIPS, and the Macintosh personal
camputer. To date, these prototypes indicate potential benefi-
cial results; e,g., increase analyst productivity, decrease the
burden of tedious manual analysis, provide consistent evaluations
of data, provide concise historical records, provide training for
new analysts, and expedite the operational training of Spacelab
analysts. The logic implemented in the prototypes, the limita-
tions of the personal computers utilized, and the degree of
accessibility to input data have led to an operational confiqura-
tion to be implemented on a SUN 3/160 Workstation. This config-
uration is currently under develcopment and on completion will
enhance the efficiency, both in time and quality, of releasing
Spacelab/ASP data.

181

INTRODUCTION:

The SIDPF processes payload data from Spacelab and ASP
missions. The SIDPF functions include the capture, quality
monitoring, processing, accounting, and shipping of data to

SIPS and the SOPS. In SIPS, Ku-band channel 2 and/or channel 3
data are captured onto high-density tapes (HDIs). The primary
functions of SIPS are the realtime capture, the monitoring of
data for quality and status coordination with the Spacelab
external interfaces such as the Spacelab Payload Operations
Control Center (POCC), the Mission Control Center (MCC), and the
Network elements. See Figure below. The data captured, includ-
ing playback and direct access channel data, are processed to
produce Spacelab Experiment Data Tapes (SEDTs) and/or Spacelab
Input/Output Data Tapes (SIDIs). To assure completeness and high
quality of SIPS processing, amalysts currently perform quality
assurance and data accounting (QA/DA) analysis by the manual
evaluation of:Spacelab Quality and Accounting Records (SQARs)
aided with information fram Spacelab reports and logs. The
results of the QA analysis determine the release of SEDTs, SIDIs
and Spacelab Quality and Accounting Tapes (SQATs) to the SOPS or
to other users. Additional data processing is performed by the
SOPS. The data are edited, time ordered with overlap removed,
decammutated, quality checked, and shipped to users. The QA/DA
analysis is a manual process of evaluating and correlating
information from various reports and logs to determine the
quality of the data and its status: release or reprocess.

’_____{WOJECT MANAGEMENT]
lﬁEQUlREHENTS

TEST DATA
(HIGH - DENSITY TAPES) (CODE 560)

e

4
o EDITING 7 FORMATTING
! : ?,:L’:,fr'::gxm —'Q—A o TIME ORDERING &
' OVERLAP REMOVAL

| _KsC PREMISSIONT ™~ T TTTTTTTTTTTTTT 1
—— L :
: PF
PREMISSION FORMAT | SLD :
INTEGRATION : MANAGEMENT : PREMISSION
' : VO DATA BASE
! 1

NASCOM rc_’ﬂ‘_"ﬂlﬂf » DATA QUALITY o UNEDITED DIGTAL] o 1O DECOM
L 13 MONITORING ° fgmn‘mo o ANCILLARY PROCESSING
: s DATA ACCOUNTING o DATA QUALITY WSER TAPES
' i Sl
! » DATA ACCOUNTING 1S KROILLARY
1

POSTMISSION
¢ POSTFUGHT ATTITUDE &
TRAJECTORY HISTORY

(USER TAPES
__/ © UNEDITED DIGITAL
¢ QUAUTY & ACCOUNTING

REAL - TME
TIMELINE / DATA SL o NONDIGITAL o ORBITER ANCILLARY
QUALITY STATUS POCC 1SC

MCC

SLOPF INTERFACES

182

Expert system applications in the Information Processing
Division were first considered for their potential to expedite
the SIDPF operations, in particular, the QA/DA analyst functions
of both the SIPS ard the SOPS. The extremely large volume of
data from one mission and the short turmaround requirement for
delivery to users often makes the QA/DA task demanding and
tediously repetitive. The abjective of the operational expert
systems is to assist the analyst by making decisions and suggest-
ing logical analysis paths based on given data quality informa-
tion. The strategy formulated to accamplish the prototypes was
to use commercial expert system shells, code the QA/DA knowledge
bases within the shells and implement them on personal compu-
ters. The SIPS KSP uses the OPS5+ Development System with a
C language interface installed on an IBM PC/AT. The SOPS Expert
System (ES) prototype was implemented with the expert system
building tool CLIPS and an in-house-written interface on an Apple
Macintosh.

SIPS KSP:

The SIPS KSP is designed to emulate the performance of
experienced SIPS QA/DA analysts in the evaluation of Spacelab
data quality and accounting information. This function is
currently performed through the examination of data quality and
accounting reports.

The first task was to gather the analysis expertise of the
QA/DA analysts to determine that this area was a practical
application for an expert system. The scope of the initial
effort was restricted due to the extensiveness of the application
and the limitations of the prototype hardware and software
configuration. Three stages of analysis were established: ini-
tial data evaluation, camparison of initial and redo processing
run data, and data trends. Each can stand alone logically but
need access to the data and decisions of the others. The use of
a database to store data quality and accounting information as
well as the decisions of each stage allows the expert system to
be divided into independent modules which run with the available
memory of the prototype configuration. As each module runs,
pertinent data and decisions are written to report files from
which database updates and printed summary reports are gener-
ated. The code for database control, the Front End module,
grew to include database creation and loading, data validation,
data maintenance, data selection, expert system module selection,

and expert system report selection.

The rule-based expert system tool OPS5+ was used to develop
the knowledge base for the KSP. The knowledge elements (rules)
are in the form "IF <condition(s)> THEN <action(s)>." The KSP
Stage 1: Initial Data Evaluation knowledge base consists of 201
rules; Stage 2: Camparison of Initial and Redo Processing Runs,
130 rules. Campletion of Stage 3: Data Trends has been deferred
to direct the use of resources to the operational system require-
ments definition.

183

'IheFrontEn'xiinterfawswiththeuserinthefomof
selection and input screens. Requiredresponsesarelimitedto
one-keystroke if default values are selected. Page forward and
backward options are provided. Data input/viewing screens are
provided to allow input and data maintenance. Stage 1 interfaces
with the user in the form of a running dialog. It is initiated
by loading and initializing the evaluation program after entering
the OPS5+ envirorment. Data not directly downloaded is obtained
by user-query; responses are limited to one keystroke. Stage 1
generates a summary report printed on user request. The Stage 2

program, after being loaded and initialized, operates without
" intervention fram the user; both a summary report and a detailed
reportarecreatedarﬂprintedonuserreqlmt.

SOPS ES PROTOIYPE:

The knowledge base for the SOPS ES prototype was developed
using the rule-based expert system language CLIPS. All knowledge
elements are represented in the form "IF <condition(s)> THEN
<action(s)>." The knowledge base can be logically divided into
sets called knowledge islands consisting of rules to diagnose a
problem, drive the user interface, and to retrieve data specific
to that knowledge island. A knowledge island can be modified or
replaced to reflect a procedural change in SOPS without affecting
the other knowledge islands; this simplifies the modification
process. The prototype consists of four knowledge islands: Run
Stopped Early, Data Gap Between Files, Data Coverage, and Data
Quality. Each was implemented only to the detail required to
realistically demonstrate the feasibility of an operational SOPS
ES. The knowledge islands will be expanded for future implemen—
tation to include particulars uncovered by this prototype.

'IheSOPSESprototypeusesmanyofthestarﬁardfeaum for
applications running on the Apple Macintosh. The features
include the use of multiple windows, pull-down menus, and dialog
boxes. Dialog boxes and windows may contain buttons, scroll
bars, or space for the analyst to type in additional information
called a text field. Whenever possible, the ES will set a
default value for the text fields; if the analyst changes the
value of a text field, the ES performs a consistency check to
prevent the entering of unacceptable values. The primary windows
viewed by the analyst are the Transcript, Timeline, and Conclu-
sion windows. The Transcript window maintains a log of the ES
session containing all questions asked by the ES, the analyst’s
responses, all recamendations fram the ES, and any analyst-added
camments. The Timeline window displays the run in a graphical
format with the ES’s current focus of attention flagged. The
Conclusion window displays the conclusions reached (rules fired)
by the ES. All windows can be printed upon campletion of the ES
session.

184

QONCIIUSIONS :

'Iheprototypesslmthattheexpertsystarsoffermany
benefits. They are fast. They are consistent. The expertise of
the most experienced staff members is now made available to all.
'Ihepmtotypascanactastrainirgtoolsmenreﬁnedtoa
detailed level. Throughout development, ways in which current
procedures could be further autamated to increase accessibility
to information, to improve processing speed, and to decrease the
monotony of repetitious tasks were identified. Also, areas in
the expert systems’ own operation will be streamlined to make the
expert system concept not only workable but operationally practi-
cal.

'Ihegoalofthee.xpertsystenprototypeswastodefinethe
design and configuration of expert systems in the mission
ernvirorment. These new operational systems will be larger, more
efficient, and more automatic, incorporating the capabilities
indicated by, but not present in the prototypes. Both the SIPS
and SOPS operational expert system configurations will use the
same hardware, the SUN 3/160 workstation, and software, CLIPS
with C language interfaces, for consistency and maintainability.
Network interfaces will be established to autamatically transfer
necessary information from the existing SIPS and SOPS mainframes
to the workstations for the expert systems’ analysis. It is
planned that this configuration will be operational by December
1988, in time to support ASTRO-1, the first of several scheduled
SIDPF missions in the post-Challenger period.

ACKNOWLEDGEMENTS :

'n\ispmjectcmldmthavebeenamsfulwiﬂnrtttae
contributions of the following personnel: Troy Ames (GSFC/Code
522), Ellen Herring (formerly an SIDPF/Code 564 mission manager),
Janice Watson, William Dallam, Michael Alvarez, Franz Berlin,
Warren Case, Michael Garner, James Pizzola, and Beth
(all of Iockheed). The SLDPF personnel also wish to acknowledge
Joe Bishop (NASA Headquarters/Code TS) for his contimiing support
in the enhancement of the SIDFF.

185

N8§8-16395

FMEAssist: A KNOWLEDGE-BASED APPROACH TO
FAILURE MODES AND EFFECTS ANALYSIS

James R. Carnes
Dannie E. Cutts

Boeing Huntsville AI Center .
PO Box 1470, MS JA-65
Huntsville, AL 35807

ABSTRACT

A Failure Modes and Effects Analysis workstation
(FMEAssist) has been designed for use during develop-
ment of the Space Station. It assists engineers in the
complex task of tracking failures and their effects on
the systen. Engineers experience increased produc-
tivity through "reduced clerical loads, reduced data
inconsistency, and significantly reduced analysis time.
System developments benefit from a more thorough

analysis than was available using previous methods.

The wide variety of design information required to
support the FMEA process is modeled by FMEAssist in a
network of different discipline and design data views
generated by a data base to knowledge base translation
tool. System designs are displayed graphically allowing
engineers to manipulate information or to induce and
record failure on appropriate parts within the network.
Propagation of functional effects for each node can be
controlled from one or more nodes within the design to
any desired level or until special conditions are

encountered.

1. INTRODUCTION

Space Station design information is modeled by FMEAssist in
a network of nodes (representing components) connected by arcs
(representing relationships between the various parts of the
design). The wide variety of information required to support the
FMEA process is acquired from a view across several heterogeneous
discipline and design data base tables and are mapped into a net-
work structure through Foundation, a data base to knowledge base
translation tool[4]. System designs are displayed graphically
allowing engineers to analyze design information and to induce
failure on appropriate parts within the network.

The architecture of this system is built upon a hierarchi-
cally decomposed functional model that determines "failure"
through abnormal component behavior. This representation permits
a more detailed description of "failure modes" beyond those typi-
cally pre-defined through either design or system engineering.

PRECEDING PAGE BLANK NOT FILMED

These functional failures are composed of component constraint
violations. Propagation of functional effects is controlled from
one or more nodes within the design to any desired level or until
special conditions, such as a critical failure, are encountered.

2. APPLICATION

Previous work on FMEA automation used a frame-based approach
where frames and slots contain pre-defined failure modes and
first order effects. While this approach offered powerful
descriptive capabilities, first-order analyses were performed
manually and entered into the model. Since assertional capabili-
ties were not provided, functional information was not modeled.
Failures were propagated through pre-programmed frame connections
using messages contained in failure mode slots.[3]

Alternately, a number of fault analysis systems have been
developed using assertional models, that is, a rule-based func-
tional approach. While assertional models provide an excellent
medium for describing functional behavior, they do not provide
the representational convenience of the structural model. Oongo-
ing work has pursued a useful mixture of structural and function
models.[1,6]

The FMEAssist approach integrates some of this work on the
coupling of structural and assertional components by combining
the connective strength of flavors with the expressiveness of
logic. A failure mode is defined as the effect a group of abnor-
mal properties has on a component. If the status of the com-
ponent, due to the its properties, is "failed" or "abnormal",
then these properties (and not the fact that the component has
malfunctioned) are propagated to connected or neighboring com-
ponents.[2,5]

Abnormal properties are grouped into failure modes at the
component level, but only to promote analysis within the failed
component. The knowledge of the mode or even the failure itself
is not distributed to the connected or surrounding nodes, but it
is the connection and environmental properties that carry a
component's fate to neighboring components. That is, a malfunc-
tioning component has no knowledge of how it affects other parts.
If the malfunction changes any of its outputs, those values
change for the connected component input ports. Input properties
for components are the output results from previous inference
upon abnormal properties. If these new properties constitute
failure or can be classed in a failure mode, they are so
recorded, but inference on component properties, normal or other-
wise, continues.

"Effects analysis" becomes a deductive process, reasoning
from the properties contained in a highly structured part
model[5]. The need for pre-programmed propagation responses is
replaced with a more refined description of an assembly or

188

component. This type of descriptive and behavioral information
is readily available and can be captured during the design and
system engineering process.

3. EXAMPLES

The examples in this section are designed to promote under-
standing of the descriptive structures and behaviors found within
FMEAssist. Figure-1 illustrates how components are defined and
described. The defcomponent macro in this example serves to
create a component type PUMP-A which inherits characteristics
(descriptive and behavioral) from another type called PUMP. The
defport and defproperty macros are used to define port/port types
and property/property values for a component type.

Some behavioral characteristics of a component type remain
constant regardless of how and where instances of it are used in
the system. These "generic" behavioral characteristics are
shared by all instances of the component type. Examples of gen-
eric behavioral descriptions can be found in Figure-2 and
Figure-3. other characteristics however, might change depending
on the operating conditions of the instance component. These
behavioral characteristics are determined at the particular

instance level.

While working with the FMEAssist application on a Foundation
Workstation, engineers are able to graphically display networks
from various perspective relations, such as subcomponent,
failure, and connection spanning tree. Inference mechanisms pro-
vide the basis for the application's single, multiple-sequential,
and multiple-parallel failure propagation. FMEAssist also pro-
vides graphical justification or narrative explanation for any
inference produced during the failure propagation. Finally,
various reports are generated on the analytical results from each
engineering session.

; define some generic component descriptions
(defcomponent PUMP-A (generic-type 'PUMP))
(defcomponent VALVE-C (generic-type 'VALVE))

; define input and output for generic component descriptions
(defport PUMP-A ((port-1 'thermal) (port-2 telectrical)))
(defport VALVE-C ((port-1 'thermal) (port-2 'electrical)))

; define properties for port connections
(defproperty THERMAL
(temperature (nominal high low))
(pressure (nominal high low))
(medium (air co2 water)))

FIGURE 1: Examples of descriptive definitions

189

; define some rules about components
(defrule PUMP-SHUTDOWN
(IF [AND [PUMP-PRESSURE-STATUS =some-pump 'LOW]
[PUMP-TEMPERATURE-STATUS =some-pump 'LOW]]
THEN (tell [PUMP-STATUS =some-pump 'ABNORMAL])))

(defrule PROPAGATE-PRESSURE-STATUS
(IF [PUMP-PRESSURE-STATUS =some-~pump 'LOW]
THEN (tell [PUMP-PRESSURE-OUTPUT =some-pump
=some-port 'LOW])
(tell [(connected-to =some-pump =some-port) 'LOW])))

(defrule PROPAGATE-TEMPERATURE-STATUS
(IF [PUMP-TEMPERATURE-STATUS =some-pump 'LOW]
THEN (tell [PUMP-TEMPERATURE-OUTPUT =some-pump
=some-port 'LOW])
(tell [(connected-to =some-pump =some-port) 'LOW])))

; create some part instances
(make-component PUMP-99 (component-type !'PUMP-3))
(make-component VALVE-46 (component-type 'VALVE-C))
(make-connection ' (PUMP-99 VALVE-46)

'((port-1 port-1l) (port-2 port-2)))

FIGURE 2: Examples of specific assertive definitions

;output behavior rule
(defrule LEAKY-THINGS-CONTAMINATE-SURROUNDINGS
(IF [AND [LEAKS =something]
[> (PRESSURE =something)
(PRESSURE (contained-in =something
=something-else))]
THEN (tell [CONTAMINATES (medium =something)
=something-else])))

;Input behavior rule
(defrule CONTAMINATED-ELECTRONIC-COMPONENTS-MIGHT-SHORT
(IF [AND [CONTAMINATES =medium =area]
[CONTAINED-IN =component =area]
[CONDUCTOR =medium]
[ELECTRICAL-COMPONENT =component]]
THEN (tell [HAS-SHORTS =component])))

FIGURE 3: Examples of generic assertive definitions

190

4. CONCLUSIONS AND FUTURE DIRECTIONS

Engineers will experience increased productivity through
reduced clerical loads, reduced data inconsistency, and signifi-
cantly reduced analysis time with the added benefit of a more
thorough analysis than was available using previous methods.
FMEAssist is easy to use, produces FMEA and Critical Items List
(CIL) reports, and keeps records of critical failures, as well as
sequences of events leading to failures.

In the future, tools like FMEAssist will make it possible
for initial failure analyses to be performed early during the
system design phases. These tools will be able to identify sig-
nificant failure modes for single and multiple-point faillures.
This will free engineers from the tedious task of enumerating the
simple single failure mode groupings and to provide an extended
capability of correlating complex fallure modes with groups of

components.
REFERENCES
1. Brachman, R.J., R.E. Fikes, and H.J. Levesque, KRYPTON: A
Functional Approach to Knowledge Representation, IEEE Com-
puter, Vol. 16(10), 1983, pp. 67-73.

2. de Kleer, J. and B.C. Williams, Diagnosing Multiple Faults,
Artificial Intelligence, Vol. 32, 1987, pp. 97-130.

3. Kamhieh, C.H., D.E. Cutts, and R.B. Purves, Failure Modes
and Effects Analysis Automation, Proceedings of the Confer-
ence on Artificial Intelligence for Space Applications,
November, 1986, pp. 169-176.

4. Purves, R.B., J.R. Carnes, and D.E. Cutts, Foundation:
Transforming Data Bases into Knowledge Bases, Proceedings of
the Conference on Artificial Intelligence for Space Applica-
tions, November, 1987.

5. Reiter, R., A Theory of Diagnosis from First Principles,
Artificial Intelligence, Vol. 32, 1987, pp. 57-95.

6. Rowley, S., H. Shrobe, R. Cassels, and W. Hamscher,

Joshua (TM) : Uniform Access to Heterogeneous Knowledge Struc-
tures, AAAI-87, Proceedings of the Sixth National Conference
on Artificial Intelligence, July 13-17, 1987, pp. 48-52.

191

N8§8-16396

ESSAA: EMBEDDED SYSTEM SAFETY ANALYSIS ASSISTANT

Peter Wallace
Joseph Holzer
Sergio Guarro

Larry Hyatt

ABSTRACT

Automating spacecraft control functions with
Software introduces novel failure modes into a systen,
some unique to an individual application. At the same
time, when embedded in an environment that is (at
least partially) wunreliable, unpredictable, and
unspecifiable, software is vulnerable to a whole range
of unforeseen eventualities. In contrast to "off-
line" applications, however, the consequences of an
erroneous software output in an embedded system
context are, typically, immediate and potentially
disasterous.

We have been building a knowledge-based tool,
the Embedded System Safety Analysis Assistant (ESSAA),
that can assist in identifying disaster scenarios, 1in
which embedded software could issue hazardous control

commands to the surrounding hardware. In short, it
attempts to answer the gquestion, "How could this
disasterous output ever occur?" Existing software-

analysis tools tend to work in the other direction -
"What if these were the starting conditions?" or, in
the case of debugging - "How did we get from these
starting conditions to this (erroneous) output?"” For
the Safety issue, such analyses generally do not
suffice, since it is often the unvisualized
combinations of conditions that lead to disaster.

ESSAA, by contrast, is intended to work from
outputs to inputs, as a complement to simulation and
verification methods. And rather than treating the
software in isolation, it examines the context in
which the software 1is to be deployed. Given a

specified disasterous outcome, ESSAA works from a
qualitative, abstract model of the complete system to
infer sets of environmental conditions and/or failures
that could cause it. The scenarios can then be
examined in depth for plausibility using existing
techniques.

At the core of our approach is the Logic
Flowgraph Method (LFM) representation language,
suitable for capturing the functionality of hardware,
software, and physical law within a single wunified

framework. The languages focuses on the key sysetm
parameters and expresses the nature of their
functional interconnections. Associated with the LFM

193 PRECECING PAGE BLANK NOT FILMZD

language is a set of inference rules, which can
examine the LFM-expressed system model, understand the
causality involved, and deduce what combinations of
things would have to be true for a specified disaster-
outcome to occur. The system model can, of course, be
re-used to examine a series of such outcomes.

As with most Model-Based Reasoning approaches, a
non-trivial question is how to construct the initial
model. our research on this aspect is progressing on
several fronts, including 1) an Intelligent Model-
Building Assistant, incorporating a Knowledge-Base of
common satellite components and their functions, the
laws of Physics relevant to satellites, and some of
the control tasks that may get implemented in
satellite software, 2) an analyzer to deduce
functional connectivity of key SW parameters directly
from the code, and 3) enrichment of the LFM modelling
language to capture new patterns of functional
connectivity.

194

N88-16397

Intelligent Process Development of Foam Molding
for the Thermal Protection System (TPS)
of the Space Shuttle External Tank

S.S. Bharwani®, J.T. Walls, and ML.E. Jackson

Martin Marietta Manned Space Systems
MSFC, AL

ABSTRACT

Martin Marietta has designed a knowledge-based system to assist process engineers and technicians in
evaluating the processability and moldability of poly-isocyanurate (PIR) formulations for the thermal protec-
tion system of the Space Shuttle external tank (ET). The Reaction Injection Molding - Process Develop-
ment Advisor (RIM-PDA) is a ‘‘coupled system’’ which takes advantage of both symbolic and numeric pro-
cessing techniques. Process knowledge, consisting of heuristic knowledge acquired from domain experts,
such as case histories of chemical formulations and their moldability in test mold configurations, and the
knowledge of causal relationships derived from the empirical data will aid the process engineer in 1) identi-
fying a startup set of mold schedules, and 2) refining the mold schedules to remedy specific process prob-
lems diagnosed by the system.

INTRODUCTION

Research in expert systems and their application to machine and process control and diagnostics has
received much attention in recent years. However, relatively little has been done to provide the application
experts with any intelligent, generic tools for organizing and representing their discoveries and knowledge
of novel processes. In particular, little attention has been given to exploratory processes whose feasibility
must be confirmed by significant experimentation.

A wide array of process management tools is available for modeling and design of both discrete and
continuous processes. At one end of the spectrum are commercially available algorithms for numerical simu-
lation of chemical and fluid flow processes. These algorithms are useful only for modeling processes which
are relatively well understood and hence amenable to rigorous mathematical treatment. At the other end are
tools for symbolic representation that are well suited for describing process domains which are too complex
to be modeled numerically, yet represent a significant body of experiential process knowledge. The
knowledge acquired from those in the field (also referred to as domain experts) is usually available in the
form of process heuristics or "rules of thumb" which have been developed and refined through a combina-
tion of intuition and trial and error over an extended period. Such knowledge, represented in the form of
condition-action pairs, can be called upon by a novice to help with local process problems.

A major drawback of the symbolic reasoning systems (also called expert systems) developed thus far
is their lack of mechanisms for guiding the process engineer in exploring the causal relationships between
process parameters and their effects on process performance. That is, they provide no capabilities for gen-
eric process development, such as deriving and representing parameter interactions between successive
stages of a multi-stage process, which is crucial for model development and/or refinement. This paper
highlights the characteristics of intelligent information processing technology that would most appropriately
address the important issues in process development. Qur discussion is based on our experience with the
design of a process development advisor to assist process engineers in developing a complex foam Reaction
Injection Molding (RIM) process. Both the advisor and the process are currently under development as a
joint effort between Martin Marietta Corporation and NASA at NASA’s Productivity Enhancement Center.

In the following, process development tasks common to a large class of process and manufacturing
domains are identified, followed by a description of the RIM process and the design of a system to address
the development tasks that are relevant to the RIM domain.

= Affiliated with Martin Marietta Laboratories, Artificial Intelligence Group, 1450 S. Rolling Road, Baltimore, MD 21227.

195

PROCESS DEVELOPMENT TASK: A PERSPECTIVE

How generic can a process development task be? Although the problem domain of immediate interest
to us is the manufacture of poly-isocyanurate (PIR) moldings with RIM technology, our principal concern is
developing tools and techniques that are useful for generic process development tasks. Hence, the system
design we propose for this purpose is equally applicable to development activities in composites, metals,
and semiconductor fabrication.

In a polymer molding operation, a process is considered developed if the molded parts consistently
meet the functional requirements of the intended application. For our domain, these requirements would be
in the form of mechanical and physical properties and thermal protection criteria for the external tank (ET),
as stated in the design specifications. In this case, process development also includes process problem diag-
nosis and solution, as well as process optimization for greater consistency, higher quality, and improved
efficiency.

Expert process engineers are very successful at diagnosing process problems because they can envision
a process as a continuum as well as a construct of discrete major functional components. This duality allows
them to track major process events and relate them to the relevant interactions between the parameters of
the components. The interactions of specific interest are later characterized by modeling the parameter rela-
tionships empirically through carefully designed sets of experiments. The experience so gained is then used
for qualitative analysis of the relative importance of the control parameters and quantitative manipulations
of the functional relationships to produce a desired improvement in the properties and thus quality of the
molded parts. The experience described above is believed to be quite generic and common to all process
development domains.

To perform these representation and reasoning tasks, an engineer needs a system that will allow con-
struction of a causal model for simulation of the process behavior at a high level of abstraction. This model
can be refined as more information is obtained about the precise quantitative relationships from the experi-
mental data, and knowledge of these relationships can then be reasoned with to determine the tolerance win-
dows on all material and equipment controls for optimum performance. A schematic describing the three-
layered process development scheme applicable to the RIM process is shown in Figure 1. The schemes for
knowledge acquisition, knowledge representation, and reasoning are distinctly different at each layer.

A system that embodies a hybrid representation comprising the three layers discussed above should be
able to answer a wide variety of process-related questions, ranging from very general to very specific. For
example, a process engineer may want to understand the role of a catalyst in PIR polymer formulation.
Catalysts come in many varieties, ranging from those that accelerate reaction rates to those that promote
selective precipitation. A process engineer should be able to ask the following types of questions of such a
system:

Causal Level: How does the catalyst concentration impact the flowability of PIR formulations?

Empirical Level: If the catalyst concentration is increased by 10%, how will the gelation time of the poly-
mer change?

Heuristic Level: Do catalysts usually affect flowability?

Here, the concerns addressed are primarily those of knowledge acquisition, knowledge representation, and
reasoning at the second layer. Issues pertaining to causal modeling, causal simulation, and integration of all
three layers for efficient reasoning will be a subject of future study.

Systematic and efficient acquisition of process knowledge derives from the application of appropriate
experimental methods and analysis tools to identify the process-critical variables and determine their impact
on the processability of the polymeric material. Such tools must couple numeric processing algorithms for
analysis with symbolic processing schemas for reasoning and interpretation of the analytical results
{Kitzmiller]. Hence, our approach is to design a coupled system with the following features:

1. Computationally efficient numeric algorithms for statistics, analysis, and graphics, which exist as
separate modules and are callable by the system as needed

2. Symbolic processes to guide the user in identifying the right selection of numeric routines to ex-
tract the empirical relationships and in interpreting the results.

196

Additionally, the knowledge acquired has to be represented in a manner natural for reasoning within
the process development environment, i.e., for dealing with process problem diagnosis and corrective
actions. Within the RIM-PIR domain, the reasoning tasks rely heavily on the explicit representation of
parameter effects on the characteristic properties of the process. A detailed description of the RIM process
and its requirements follows.

The RIM Process

Reaction injection molding is a process in which polymeric products are formed from highly reactive
chemicals in high-pressure impingement mixing machines. Obtaining the desired functional properties of the
molded part requires control of a wide variety of process variables associated with four major process areas:

1. The chemical systems which produce the urethane and PIR polymers

2. The RIM machine itself, including at least two metering pumps, a self-cleaning impingement
mixer, a set of temperature-controlled conditioning tanks, and the piping, hoses, filters, and con-
trols required for operation

3. The mold support or mold-handling system
4. The mold temperature-control system.

Activities in these four areas are interdependent. The chemical systems must form polymers with the
physical properties required for the part being molded; the metering system must meter accurately and mix
thoroughly; the mold support must position the mold to best facilitate the expansion process; and the mold
itself must be designed to facilitate the flow of the mixed reactants during filling and expansion, and to con-
trol the temperature of the chemical reaction within a relatively narrow range. The fluid expansion operation
inside a mold is particularly complex because it involves multiphase flow of reactive polymers that undergo
rapid state changes.

Figure 2 shows a process flow diagram for a RIM process. Since the process is still in its prototype
phase, all pre- and post-process operations are performed either manually or by offline dedicated systems.
Engineering evaluation and quality inspection tests are performed at the end of a complex part molding pro-
cess to provide the process engineers with early information on the status of the manufacturing process.
Although the tests could indicate a variety of process problems at several levels of complexity, the level at
which a process engineer may choose to diagnose a problem usually depends on his experience with the
process and his training in modeling and analyzing the process. For example, a novice process engineer may
try to resolve inconsistencies in part quality by making ad hoc changes in mold setup or RIM machine
parameters because he does not recognize the true source of the problem. Diagnosing the actual cause of
substandard part moldings requires careful analysis of parameter interactions at multiple stages of the mold-
ing operation.

The multistage diagram of the RIM process shown in Figure 3 is a simplified representation of the
typical parameters that affect the process. At each stage, there are generally several options for modifying
the process behavior. One such option is to change the reactivity of the chemical formulation, which, in the
case of PIR formulations, is known to have a major impact on the processability of the material. For exam-
ple, improved flowability could be achieved by changing the concentrations of the catalysts, or the blowing
agents or some combination of the two. On the other hand, for duplicating the processing capabilities of a
prototype operation on a delivery system, it is more appropriate to scale the reactivity up or down (within
limits) by changing the impingement pressure at the RIM machine stage or the temperature of the mold at
the mold setup stage. The best or the optimal of the available alternatives is generally not obvious and may
require a thorough and careful analysis of multivariate effects on the response surface of the characteristic
properties. '

In addition to understanding the process behavior modifications produced by intra-state parameter vari-
ations, the process engineer also needs to study their effect on the process over the succeeding stages. For
example, the complexity of a part to be RIM-molded is usually determined by the overall size of the part
and the maximum cumulative resistance to flow through the mold. If the part is too big and/or the flow
resistance is too high, then the part may have to be made from two or more simpler molds. This decision, in
turn, will govern the appropriate settings of the mold setup parameters at a succeeding stage. The process
variables that may affect the molding quality are:

197

Qualitative Reasoning aggi}l?rt\gear%ausal
Cavsal | about the Process Simulation of the
process.

Causal relationship

Y Detailed Quantitative between parameters
Empirical analysis of of consecutive steps
Parameter Interaction derived from empirical
data.

Immediate Parameter

\J Control through

Heuristic characterization of

Individual Process
Units

Characterization of
Chemical formulation,
RIM-machine and the
Mold.

Figure 1. Multilayered representation of process knowledge

il 1
' 1 Heat
socyanate
Yeeg tank exchanger

Control

Parameters Process

« Polymer Component Ratio Chemicatl
« Catalyst Concentration Formulation
* Multiple Blowing Agents .

» Impingement Pressure

* Fiow Rate — MaRclr':Alne
« Shot Size
Y
* Flow Resistance Mold
+ Stress Concentration Geometry

* Molkd Temperature r—

« Mold Orientation Mold
——

« Gate Location Setup

* Vent Location oy ——/

Effects on
Properties

| «—— + Reactivity

—L—

« Scaled Reactivity
« Total Quantity

« Max Resistance to

lg———— Flow

« Stress Gradient

« Bond Strength

|-——— - Rind Hardness

* Char Resistance

Figure 3. Functional decomposition of the RIM process showing
typical control parameters and their effect on the process

| S
L =

1 Metering Pum

Low-Pressure
circulating pump

- 1

Heat
exchanger

Mixhead

ﬂ Y

Low-Pressure
circulating pump

Figure 2. The RIM Process

198

sPolymer component ratio
oCatalyst concentration
eMold temperature

eMold orientation
eImpingement pressure
eGate location

eVent locations

eShot size.

Some typical problems resulting from lack of control of one or more of these variables are:

1. Incomplete fill - Failure of the expanding foam to reach all parts of the
mold cavity

2. Voids - Presence of large blowholes or pinholes in the molded
part

3. Warp - Bent part, deviating from flat condition or dimensions
out of tolerance

4. Flash - A film of excess material outside the mold cavity

5. Density Reject - Part density not within specification

6. Hardness Reject - Rind hardness not within specification

7. Strength Reject - Tensile strength not within specification.

Some of these problems belong to a class referred to as gross defects; i.e., these are quality defects in
the molded part whose remedy requires gross adjustments in one or more control parameters. Such problems
are best handled by resorting to the use of heuristics. For example, the presence of large voids in a molded
part is usually attributed to lack of appropriate vent holes in the mold to bleed off air entrapped during the
expansion process. Hence, the system can capture this knowledge through a rule as follows:

IF there is evidence of LARGE VOIDS in the part
AND there is CERTAINTY > 0.9 of VOIDS due to ENTRAPPED AIR

THEN provide VENT HOLES in the mold where the voids are found

Other problems are more subtle and require careful analysis to establish the ideal window of process param-
eter values. All problems regarding properties that are out of specification belong to this class.

KNOWLEDGE BASE

The knowledge of the system consists of information on chemical formulations and part geometries
that have been used in the past and have relevance to the ongoing process development. Each chemical for-
mulation exhibits a characteristic behavior which can be expressed in terms of its state changes over time
(for reactive chemical systems, such behavior is also referred to as its reactivity). Qualitative descriptions of
observable states, such as ‘‘cream,”” ‘‘gel,”’ ‘‘string,”’ and ‘‘tack-free,”’ then generate a quantity space
[Forbus] for a continuous process over a temporal dimension. The case history for each chemical formula-
tion is thus represented by such a quantity space because it contains critical phase transformations of the
fluid which provide important information regarding the processability of the chemical formulation.

The case history for part geometry is grouped into classes of parts requiring similar startup process
parameters. Currently, there are three distinct part classes: spherical, rectangular, or prismoidal. Within
each class, there are fuither fine-grained distinctions or subclasses. Assignment of a part to a particular sub-
class is determined by the number and type of its primitive flow obstruction features. Such a classification
scheme minimizes the process development time significantly by encompassing mold schedules already
developed for parts in the subclasses of the case history.

Process data acquired from the RIM machine and the process-monitoring instruments are represented
in the form of records. Query language facilities of a relational database manager are used to generate data
summaries, which are then used by the analysis module as needed to derive individual parameter effects on
the processability of the material. All data within the analysis module are represented in the form of arrays

199

because of their efficient representation of numeric processing algorithms as well as graphics algorithms to
communicate the parameter effects graphically to the user. ‘

The knowledge base also contains data analysis and data interpretation schemas. These determine
when to call certain analysis functions to determine statistical distributions and variances, and provide
methods for evaluating the effects of individual parameters on the behavior of the process, respectively.

KNOWLEDGE REPRESENTATION AND CONTROL

The process diagnostic knowledge of the system consists of heuristics represented in the form of pro-
duction rules [Davis] and data objects. The rules explicitly state the relationship between part defects and
the actions that could remedy such defects, while the object framework is a representation of data on gross
visual defects and the test results on the properties of the molded part. Generally, objects belong to one or
more classes and have properties with value slots, as shown in Figure 4.

The parameter effects are represented in the form of intensities, distributions, and explicit mathemati-
cal formulations [Blum] and may be accessed from the knowledge base and/or database by the inference
engine. All data analysis and interpretation schemas have a Shank’s ““script’’ [Shank] flavor. The schemas
are represented as frames [Stefik], enabling them to be instantiated with relevant parameter values.

The system inferencing scheme is mainly data-driven/forward chaining. The initial set of findings
establishes the focus of attention, which then controls the evaluation of only those hypotheses which are
relevant to the current line of reasoning. Hypotheses that share common data objects are grouped into clus-
ters called ‘‘knowledge islands.”” The presence of such clustering significantly improves the speed and
efficiency of inference. Hypotheses within a knowledge island are organized hierarchically and are explicitly
categorized to control the order of their evaluation. Such a categorization is necessary to ensure a consistent
dialogue with the user-- a dialogue that is logically relevant to the problem under consideration.

Sample Session with RIM-PDA

The control within the system is illustrated in Figure 5. The user usually needs advice from the system
if a new part with a different geometric configuration is being considered for molding or a new chemical
formulation with a different reactivity characteristic is being evaluated for use as a molding material. The
user initiates a dialogue by generating an appropriate event to inform the system that a new set of mold
schedules is required. The system searches through the case histories to find the mold schedules of a case
which closely resembles the current one. The startup set of schedules is then used to execute the first itera-
tion of the molding operation. In-process sensory data collected during the molding operation, together with
the post-process test results, are then analyzed to inform the user of the health of the process. If the user
informs the system about any problems in the quality of the molded part, the system enters the refinement
phase [Bharwani], diagnosing the source of the problem and recommending a new set of mold schedules
each time a problem is reported.

CONCLUSIONS

This paper has addressed process development as a generic engineering task and identified its demands
on advanced information technology. A coupled system is proposed to take advantage of conventional algo-
rithmic approaches as well as state-of-the-art artificial intelligence methodologies to cope with the identified
tasks. Several issues identified earlier are currently under investigation. Mechanisms for switching between
layers of reasoning based on the type of question asked of the system have yet to be developed. Addition-
ally, the concept of a quantity space for causal simulation needs further refinement.

ACKNOWLEDGEMENT

This work was funded by NASA NAS8-30300 under Technical Directives 1.6.2.1-249-R2 and 1.6.2.1-673.
The authors would like to thank the NASA management team for making these activities possible. They
would also like to thank Steve Barash, John Thorp, Judith Marcus, and Rob Cochran for help on several
occasions, and John Lewis for his encouragement in pursuing the ideas expressed in the paper.

200

ORIGINAL PAGE IS
OF POOR QUALITY

Process Pasrameters: Mold

Part Property Specifications

nsdeSlwh
Density

Rind Hardness

Properties Values

R : Shore A V : Numeric Constant
P : Test Status \ : String Constant e.g. Above_Spec
In_Spec
Below_Spec
Figure 4. Class/Object Data Structure
))
. art Vi
Molding Part Visual
, > and
Operation
Property Tests

4

;New mold

schedule

SEEEm— ———

Case
Histories

Process _Status of the Data
. " molded part .
Engineer Analysis

S/ N

Poid schedue
suggestions if any

Evenl:

Report process
-~ problems

Inference ¥
and I

|Exent: - New part configuration

Knowledge
« New chemical formulation

Base

Control

Figure 5. RIM-PDA Control Scheme

201

REFERENCES

1. [Bharwani] Bharwani, S.S. et al. (1986). ‘‘Refinement of Environmental Depth Maps Over Mutiple
Frames,”’” in Proc. of IEEE Workshop on Motion: Representation and Analysis, Charleston, S.C., May 1986.

2. (Blum] Blum, R.L. (1983). ‘‘Representation of Empirically Derived Causal Relationships,”” in Proc. of
Eighth International Joint Conference on Artificial Intelligence, Karlsruh